เซตมานดัลบรอ

จากวิกิพีเดีย สารานุกรมเสรี
เซตมานดัลบรอ

เซตมานดัลบรอ (อังกฤษ: Mandelbrot set) คือ เซตของจุดในระนาบเชิงซ้อนที่เรียงตัวเป็นแฟร็กทัล ในทางคณิตศาสตร์นิยามเซตมานดัลบรอ คือ เซตของค่าจำนวนเชิงซ้อน c ซึ่งให้ทางเดินของ 0 ภายใต้การส่งวนซ้ำของ ฟ้งก์ชันกำลังสอง (quadratic function) z2 + c มีค่าจำกัด

นอกจากแวดวงคณิตศาสตร์แล้ว เซตมานดัลบรอก็เป็นที่รู้จักแพร่หลาย เนื่องมาจากความสวยงามของมัน และโครงสร้างที่ซับซ้อน อันเกิดจากนิยามที่มีรูปแบบง่าย ๆ นักคณิตศาสตร์ เบอนัว มานดัลบรอ และนักคณิตศาสตร์อื่นอีกหลายท่าน ได้พยายามนำคณิตศาสตร์แขนงนี้มาเผยแพร่ให้เป็นที่รู้จักในวงกว้าง

ประวัติ[แก้]

เซตมาตัดบรอถูกจัดอยู่ในหัวข้อพลศาสตร์เชิงซ้อน ซึ่งเป็นสาขาที่เริ่มศึกษาโดยนักคณิตศาสตร์ชาวฝรั่งเศส ปิแอร์ ฟาตู และ กาสตง จูเลีย ในช่วงต้นของศตวรรษที่ 20 โรเบิรต์ บรูค และ ปีเตอร์ มาเทลสกี เป็นผู้วาดรูปเซตนี้เป็นครั้งแรกในการศึกษากรุปไคลน์ในปี ค.ศ. 1978

นิยาม[แก้]

เซตมานดัลบรอ นิยามโดยควาดราติกโพลิโนเมียลเชิงซ้อน

ที่กำหนดโดย

โดยที่ เป็นตัวเลขเชิงซ้อน สำหรับ แต่ละค่า พิจารณาพฤติกรรมของลำดับ โดยการ วนซ้ำฟังก์ชัน เริ่มต้นที่ ซึ่งเป็นได้สองกรณีคืออาจมีค่าสู่อนันต์ หรือ มีค่าจำกัดภายในวงกลมรัศมีหนึ่ง ๆ เซตมานดัลบรอ คือเซตของจุด ทุกจุดที่ไม่เข้าสู่อนันต์

ภาพเซตมานดัลบรอ จุด c มีสีดำถ้าอยู่ในเซต นอกนั้นมีสีขาว

นิยามอย่างเป็นทางการหนึ่งคือ ถ้า คือไอเทอเรทที่ n ของฟังก์ชัน (หมายถึงคอมโพสิทฟังก์ชัน ของตัวมันเอง n ครั้ง) เซตมานดัลบรอเป็นซับเซตของระนาบเชิงซ้อนที่ถูกกำหนดโดย

ในทางคณิตศาสตร์ เซตมานดัลบรอเป็นเพียงเซตของจำนวนเชิงซ้อน จำนวน จะอยู่ในเซต หรือไม่อยู่อย่างใดอย่างหนึ่ง ภาพของเซตมานดัลบรอสามารถสร้างได้โดยกำหนด ที่อยู่ใน ให้เป็นสีดำ นอกนั้นเป็นสีขาว ภาพที่มีสีสันสวยงามขึ้นที่พบเห็นบ่อย ๆ สร้างโดยการกำหนดสีต่าง ๆ แทนอัตราเร็วที่จุดมีค่าเข้าสู่อนันต์

ดูเพิ่ม[แก้]