อนุกรมฟูรีเย

จากวิกิพีเดีย สารานุกรมเสรี

อนุกรมฟูรีเย ตั้งชื่อตาม โฌแซ็ฟ ฟูรีเย อนุกรมฟูรีเยเป็นเทคนิคทางคณิตศาสตร์ที่มีประโยชน์ เช่นใช้ในการแยกปัญหาออกเป็นส่วนย่อยๆ ที่ง่ายกว่าปัญหาดั้งเดิม โดยอนุกรมฟูรีเย นั้นเป็นการกระจายฟังก์ชันคาบ ที่มีคาบ 2π ให้อยู่ในรูปผลบวกของ ฟังก์ชันคาบในรูป

ซึ่งเป็น ฮาร์โมนิก ของ ei x หรือ อาจเขียนในรูปของฟังก์ชัน ไซน์ และ โคไซน์

ดูประวัติที่บทความหลัก การแปลงฟูรีเย

นิยาม[แก้]

พิจารณาฟังก์ชันจำนวนเชิงซ้อน f(x) ของตัวแปรซึ่งมีค่าเป็นจำนวนจริง ที่มีคาบ 2π และ สามารถหาค่าปริพันธ์ของกำลังสอง ในช่วง 0 ถึง 2π ได้ การกระจายฟังก์ชันในรูปของอนุกรมฟูรีเยจะหาได้จาก

อนุกรมฟูรีเย สัมประสิทธิ์ของอนุกรมฟูรีเย
จาก สูตรของออยเลอร์ (Euler's formula) เราสามารถเขียน f(x) อยู่ในรูปอนุกรมอนันต์ของ และ

โดยที่ , และ

ตัวอย่าง[แก้]

พิจารณาฟังก์ชัน สำหรับค่า และเป็นคาบในช่วงที่เหลือ ตามข้อสมมุติของอนุกรมฟูรีเย ดังรูป

Fxeqx.png

สัมประสิทธิ์ของอนุกรมฟูรีเยสามารถคำนวณหาได้ดังต่อไปนี้ สังเกตว่า cos(nx) เป็นฟังก์ชันคู่ ในขณะที่ f เป็นฟังก์ชันคี่เช่นเดียวกับ sin(nx)

สังเกตว่า a0 และ an มีค่าเท่ากับ 0 เนื่องจาก x และ x cos(nx) เป็นฟังก์ชันคี่ ดังนั้นอนุกรมฟูรีเยของ f(x) = x คือ:

สำหรับการประยุกต์ใช้งานอนุกรมฟูรีเย ดู ค่าของฟังก์ชันซีตาของรีมันน์ ที่ s = 2

ภาพเคลื่อนไหวแสดงกราฟต่อเนื่องห้าอันดับจากอนุกรมฟูรีเยที่เป็นคำตอบ