สัญลักษณ์ชเล็ฟลี
ในทางเรขาคณิต สัญลักษณ์ชเล็ฟลี (อังกฤษ: Schläfli symbol) คือสัญกรณ์ที่อยู่ในรูปแบบ {p, q, r, …} ที่เป็นตัวกำหนดพอลิโทปและเทสเซลเลชันปรกติ ตั้งชื่อตามลูทวิช ชเล็ฟลี (Ludwig Schläfli) นักคณิตศาสตร์ในคริสต์ศตวรรษที่ 19 ผู้มีส่วนร่วมคนสำคัญในเรื่องเรขาคณิตและพื้นที่อื่น ๆ
คำอธิบาย
[แก้]สัญลักษณ์ชเล็ฟลีเป็นบทนิยามเวียนเกิดชนิดหนึ่ง เริ่มต้นด้วย {p} หมายถึงรูปหลายเหลี่ยมปรกติที่มี p ด้าน ตัวอย่างเช่น {3} คือรูปสามเหลี่ยมปรกติ (ด้านเท่ามุมเท่า), {4} คือรูปสี่เหลี่ยมปรกติ (จัตุรัส) เป็นต้น
ถัดไปคือ {p, q} หมายถึงทรงหลายหน้าปรกติที่แต่ละหน้าเป็นรูป p เหลี่ยมปรกติและมีเป็นจำนวน q รูปรอบจุดยอดจุดหนึ่ง ตัวอย่างเช่น ทรงลูกบาศก์มีรูปสี่เหลี่ยมจัตุรัสรอบจุดยอดจุดหนึ่งเป็นจำนวนสามรูป ดังนั้นจึงเขียนแทนด้วย {4, 3}
{p, q, r} ก็คือพอลิโทปสี่มิติปรกติที่แต่ละห้อง (cell) เป็นทรงหลายหน้าปรกติ {p, q} และมีเป็นจำนวน r รูปทรงรอบขอบด้านหนึ่ง เป็นเช่นนี้เรื่อยไป
พอลิโทปปรกติสามารถมีองค์ประกอบเป็นรูปดาวหลายแฉกได้ เช่นรูปดาวห้าแฉก (pentagram) ใช้สัญลักษณ์ {5/2} เป็นตัวแทนของจุดยอดแบบรูปห้าเหลี่ยมแต่เชื่อมโยงกันในรูปแบบที่ต่างไป
แฟซิต (facet) ของพอลิโทปปรกติ {p, q, r, …, y, z} โดยทั่วไปคือ {p, q, r, …, y} ซึ่งมีเป็นจำนวน z แฟซิตรอบจุดยอดแต่ละจุด
พอลิโทปปรกติจะมีภาพจุดยอด (vertex figure) เป็นรูปปรกติด้วย ดังนั้นภาพจุดยอดของพอลิโทปปรกติ {p, q, r, …} คือ {q, r, …}
สัญลักษณ์ชเล็ฟลีสามารถเขียนแทนทรงหลายหน้าแบบนูนที่มีขอบเขตจำกัด เทสเซลเลชันที่มีขอบเขตไม่จำกัดบนปริภูมิแบบยุคลิด หรือเทสเซลเลชันที่มีขอบเขตไม่จำกัดบนปริภูมิเชิงไฮเพอร์โบลา ขึ้นอยู่กับความบกพร่องแบบมุม (angle defect) ของการสร้าง ความบกพร่องแบบมุมเชิงบวกทำให้ภาพจุดยอดสามารถ พับ ได้ในมิติที่สูงกว่าและวนกลับมาหาตัวเองกลายเป็นพอลิโทป ความบกพร่องแบบมุมเชิงศูนย์จะปูรูปทรงจนเต็มปริภูมิในมิติเดียวกันเป็นแฟซิต ส่วนความบกพร่องแบบมุมเชิงลบไม่สามารถเกิดขึ้นได้ในปริภูมิธรรมดา แต่สามารถสร้างได้ในปริภูมิเชิงไฮเพอร์โบลา
ภาพจุดยอดโดยปกติจะถูกมองว่าเป็นพอลิโทปที่มีขอบเขตจำกัด แต่บางครั้งก็สามารถพิจารณาว่าเป็นเทสเซลเลชันโดยตัวมันเอง
พอลิโทปปรกติรูปทรงหนึ่งจะมีพอลิโทปคู่กัน (dual polytope) อีกรูปทรงหนึ่ง ซึ่งเขียนแทนด้วยสัญลักษณ์ชเล็ฟลีในลำดับย้อนกลับ พอลิโทปปรกติคู่กันในตัว (self-dual) จะมีสัญลักษณ์ชเล็ฟลีแบบสมมาตร นั่นคือดัชนีในลำดับย้อนกลับก็ยังคงเดิม
กรุปสมมาตร
[แก้]สัญลักษณ์ชเล็ฟลีมีความเกี่ยวข้องอย่างใกล้ชิดกับกรุปสมมาตรการสะท้อน หรือเรียกว่าค็อกซีเตอร์กรุป (Coxeter group) โดยใช้เลขดัชนีเหมือนกันแต่ใช้วงเล็บเหลี่ยมแทนเป็นรูปแบบ [p, q, r, …] กรุปเช่นนี้มักจะถูกตั้งชื่อตามพอลิโทปปรกติที่มันสร้างขึ้นมา ตัวอย่างเช่น [3, 3] คือค็อกซีเตอร์กรุปสำหรับสมมาตรเชิงทรงสี่หน้า (tetrahedral symmetry), [3, 4] คือสมมาตรเชิงทรงแปดหน้า (octahedral symmetry) และ [3, 5] คือสมมาตรเชิงทรงยี่สิบหน้า (icosahedral symmetry) เป็นต้น
พอลิโทปปริซึมเอกรูป
[แก้]พอลิโทปปริซึมเอกรูปสามารถนิยามและตั้งชื่อได้ด้วยผลคูณคาร์ทีเซียนของพอลิโทปปรกติในมิติที่ต่ำกว่า ดังนี้
- ปริซึม p เหลี่ยม ซึ่งมีภาพจุดยอดเป็น p.4.4 เขียนแทนด้วย { } × {p}, สัญลักษณ์ { } หมายถึงเส้นตรงหนึ่งหน่วย
- ปริซึมเอกรูปที่มีหน้าเป็น {p, q} เขียนแทนด้วย { } × {p, q}
- ดูโอปริซึม p-q เขียนแทนด้วย {p} × {q}
สัญลักษณ์ชเล็ฟลีส่วนขยาย
[แก้]ค็อกซีเตอร์ได้ขยายแนวคิดของสัญลักษณ์ชเล็ฟลีออกไปเพื่อใช้กับทรงหลายหน้าเสมือนปรกติ (quasiregular polyhedron) โดยเพิ่มมิติตามแนวดิ่งลงในสัญลักษณ์ เป็นจุดเริ่มต้นสู่แผนภาพค็อกซีเตอร์-ดืยน์กิน (Coxeter-Dynkin diagram) ที่มีนัยทั่วไปมากขึ้น
รูปแบบ | สัญลักษณ์ชเล็ฟลีส่วนขยาย | สัญกรณ์ที | แผนภาพค็อกซีเตอร์-ดืยน์กิน |
---|---|---|---|
ทรงหลายหน้าปรกติ | |||
ทรงหลายหน้าเสมือนปรกติ | |||
ทรงหลายหน้าปรกติคู่กัน |
และสำหรับพอลิโทปสี่มิติปลายตัดครึ่งด้าน (rectified 4-polytope) ก็จะเป็นเช่นนี้
รูปแบบ | สัญลักษณ์ชเล็ฟลีส่วนขยาย | สัญกรณ์ที | แผนภาพค็อกซีเตอร์-ดืยน์กิน |
---|---|---|---|
ทรงหลายห้องปรกติ | |||
ทรงหลายห้องปลายตัดครึ่งด้าน | |||
ทรงหลายห้องปลายตัดครึ่งด้านคู่กัน | |||
ทรงหลายห้องปรกติคู่กัน |
อ้างอิง
[แก้]- Coxeter, H.S.M.; Regular Polytopes, (Methuen and Co., 1948). (pp. 14, 69, 149) [1]