สมการเชบีเชฟ
ลิงก์ข้ามภาษาในบทความนี้ มีไว้ให้ผู้อ่านและผู้ร่วมแก้ไขบทความศึกษาเพิ่มเติมโดยสะดวก เนื่องจากวิกิพีเดียภาษาไทยยังไม่มีบทความดังกล่าว กระนั้น ควรรีบสร้างเป็นบทความโดยเร็วที่สุด |
สมการเชบีเชฟ (อังกฤษ: Chebyshev's equation) คือสมการอนุพันธ์กำลังสองสามัญเชิงเส้น (second order linear Ordinary differential equation) ซึ่งมีรูปแบบดังนี้
โดย p ค่าคงที่จำนวนจริง สมการนี้ตั้งตามชื่อของนักคณิตศาสตร์ชาวรัสเซีย ฟับนูตี เชบีเชฟ (Pafnuty Chebyshev)
ผลตอบจะอยู่ในรูปของอนุกรมค่าที่ยกกำลัง (Power series):
โดยที่ค่าสัมประสิทธิ์ต้องสอดคล้องกับความสัมพันธ์เวียนเกิด (recurrence relation) ดังต่อไปนี้
จากการทดสอบด้วยอัตราส่วน (ratio test) กับความสัมพันธ์เวียนเกิดข้างต้น จะพบว่าค่า ในอนุกรมดังกล่าวจะลู่เข้า (converge) ในช่วง
ความสัมพันธ์เวียนเกิดข้างต้นนี้เราสามารถกำหนดค่าเริ่มต้นสำหรับ และ ได้ ซึ่งทำให้ได้ผลตอบในปริภูมิสองมิติที่เป็นอิสระต่อกัน เช่นหากลองเลือกให้ และ มีค่าเป็น และ
กรณี = 1 ; = 0 จะได้
และ
กรณี = 0 ; = 1 จะได้
ซึ่งผลตอบในรูปแบบทั่วไปเกิดมาจากผลรวมเชิงเส้น (linear combination) ของสองผลตอบข้างต้นนี้
เมื่อ เป็นจำนวนเต็มบวก ฟังก์ชันใดฟังก์ชันหนึ่งที่กล่าวมาข้างต้นจะมีลำดับที่จำกัด โดยที่ ฟังก์ชัน จะมีพจน์ถึงแค่ เมื่อ เป็นจำนวนคู่ และในทางกลับกัน ฟังก์ชัน จะมีพจน์ถึงแค่ เมื่อ เป็นจำนวนคี่ ซึ่งส่งผลให้ลำดับของอนุกรมผลตอบจะมีลำดับจำกัดอยู่แค่ลำดับ และเป็นเพียงพหุคูณของ พหุนามเชบีเชฟ (Chebyshev polynomial) ลำดับ เท่านั้นเอง ดังจะเขียนเป็นความสัมพันธ์ได้ดังนี้
- ถ้า เป็นจำนวนคู่
- ถ้า เป็นจำนวนคี่
โดยที่ คือ พหุนามเชบีเชฟ ลำดับ
อนึ่ง เราสามารถหาผลตอบได้ในกรณีที่ เป็นจำนวนเต็มลบได้เช่นกัน เพียงแต่ว่าผลตอบที่ได้นั้นจะซ้ำกับผลตอบในกรณีที่ เป็นจำนวนเต็มบวก อันเนื่องมาจากสมการเชบีเชพนี้มีคุณสมบัติไม่ไม่แปรเปลี่ยน (invariant) ภายใต้การแทนค่าระหว่าง และ นั้นเอง