ปัญหามอนตี ฮอลล์

จากวิกิพีเดีย สารานุกรมเสรี
ในการเลือกเปิดประตู ผู้เล่นเลือกประตูที่ 3 แล้วผู้ดำเนินรายการเปิดประตูที่ 1 ซึ่งมีแพะอยู่ด้านหลังให้ดู และให้โอกาสผู้เล่นเลือกว่าจะเปลี่ยนประตูที่ 3 ที่เลือกไว้กับประตูที่ 2 ที่เหลืออยู่หรือไม่

ปัญหามอนตี ฮอลล์ หรือ เกมประตูดวง (อังกฤษ: Monty Hall problem) นี้ตั้งชื่อตามชื่อผู้ดำเนินรายการ "มอนตี ฮอลล์" (Monty Hall) ในรายการเกมโชว์ในสหรัฐอเมริกา ชื่อ "Let's Make a Deal" ส่วนชื่อภาษาไทย มาจากปัญหาเดียวกันในรายการในประเทศไทย ชื่อ ประตูดวง เกมปัญหานี้เป็นปัญหาทางความน่าจะเป็น โดยในเกม จะมีประตู 3 สามประตูให้ผู้เล่นเลือก โดย มีหนึ่งประตูที่มีรางวัลอยู่หลังประตู (ซึ่งในรายการ "Let's Make a Deal" คือ รถยนต์) ส่วนอีกสองประตูที่เหลืออยู่นั้นจะไม่มีรางวัล (ในรายการ "Let's Make a Deal" นั้นจะมีแพะ) ผู้เล่นนั้นจะเลือกหนึ่งประตูและได้สิ่งที่อยู่ด้านหลังประตูนั้นเป็นรางวัล แต่ก่อนที่จะเปิดประตูที่ผู้เล่นเลือกไว้เพื่อดูว่ามีอะไรอยู่ด้านหลัง ผู้ดำเนินรายการจะเปิดประตูหนึ่งประตูที่มีแพะอยู่จากสองประตูที่เหลือ หลังจากนั้นผู้ดำเนินรายการจะให้โอกาสผู้เล่น เลือกเปลี่ยนประตูที่เลือกไว้แล้ว กับประตูที่เหลืออยู่

ปัญหา : ผู้เล่นควรจะเลือกเปลี่ยนประตูที่เลือกไว้แล้วกับอีกประตูหนึ่งที่เหลืออยู่หรือไม่ การเปลี่ยนประตูจะเพิ่มโอกาสถูกรางวัลมากขึ้นหรือไม่?

คำตอบ : ผู้เล่นควรจะเลือกเปลี่ยนประตู เนื่องจากจะเพิ่มโอกาสถูกรางวัลมากขึ้นเป็น 2/3 ดังรายละเอียดด้านล่าง

ปัญหานี้มีชื่อเรียกอีกชื่อหนึ่งว่า มอนตี ฮอลล์ พาราดอกซ์ (Monty Hall paradox) เนื่องจากคำตอบของปัญหานั้นค่อนข้างจะสวนกับสามัญสำนึก ถึงแม้ว่าปัญหานี้จะไม่ได้เป็น พาราดอกซ์ จริง ๆ ก็ตาม

ปัญหา และ คำตอบ[แก้]

เงื่อนไข ของปัญหา[แก้]

รายละเอียดของปํญหา

  • หลังประตู 3 บาน จะมี แพะ หรือ รถ อยู่ โดยมี 1 ประตูที่มีรถยนต์ และ 2 ประตูที่มีแพะ
  • ผู้เล่นเลือก 1 ประตูจาก 3 ประตู แต่ยังไม่เปิดดูว่ามีอะไรอยู่หลังประตู
  • ผู้ดำเนินรายการรู้ล่วงหน้าว่ามีอะไรอยู่หลังประตูแต่ละบาน
  • ผู้ดำเนินรายการจะต้องเปิดประตู 1 บานจากประตูที่เหลืออยู่ และ ให้โอกาสผู้เล่นเลือกเปลี่ยน
  • ผู้ดำเนินรายการจะเปิดประตูที่มีแพะอยู่เสมอ
    • ถ้าประตูที่ผู้เล่นเลือกไว้มีแพะอยู่ ผู้ดำเนินรายการจะเลือกเปิดประตูที่มีแพะอีกประตูที่เหลืออยู่
    • ถ้าประตูที่ผู้เล่นเลือกไว้มีรถยนต์อยู่ ผู้ดำเนินรายการจะสุ่มเลือกเปิดประตูใดประตูหนึ่งจาก 2 ประตูที่เหลืออยู่
  • ผู้ดำเนินรายการ ให้โอกาสแก่ผู้เล่นในการเลือกว่าจะ เลือกประตูเดิมที่เลือกไว้แล้ว หรือจะสลับกับประตูที่เหลืออยู่

คำถาม คือ โอกาสที่ผู้เล่นจะเลือกรถยนต์จะเพิ่มขึ้นหรือไม่ จะผู้เล่นเลือกที่จะสลับประตู บานที่เลือกไว้กับบานที่เหลืออยู่?

คำตอบ[แก้]

คำตอบของปัญหานี้คือ ผู้เล่นควรจะ สลับประตู โอกาสที่ผู้เล่นจะเลือกได้รถนั้นจะเพิ่มขึ้นเป็นสองเท่า หากผู้เล่นเลือกสลับประตูที่เลือกไว้เดิมกับประตูที่เหลืออยู่

กำหนดให้สิ่งที่อยู่หลังประตู คือ รถยนต์ แพะหมายเลข 1 และ แพะหมายเลข 2 รูปแบบของเหตุการณ์ที่เกิดขึ้นได้มี 3 แบบ แต่ละแบบมีความน่าจะเป็น 1/3 เท่า ๆ กัน คือ

  • ผู้เล่นเลือกถูก แพะหมายเลข 1 ผู้ดำเนินรายการเลือก แพะที่เหลืออยู่คือ หมายเลข 2 และ ผู้เล่น สลับประตูจะได้รถยนต์
  • ผู้เล่นเลือกถูก แพะหมายเลข 2 ผู้ดำเนินรายการเลือก แพะที่เหลืออยู่คือ หมายเลข 1 และ ผู้เล่น สลับประตูจะได้รถยนต์
  • ผู้เล่นเลือกถูก รถ ผู้ดำเนินรายการเลือกประตูหนึ่งจากประตูที่เหลือ และ และ ผู้เล่น สลับประตูจะไม่ได้รถยนต์

จะเห็นว่า สองกรณีแรกนั้น ผู้เล่นได้รถยนต์ด้วยการสลับ และ กรณีที่สามเพียงกรณีเดียวเท่านั้นที่ ได้รถยนต์ด้วยการไม่สลับ ดังนั้นโอกาสในการถูกรางวัลด้วยการสลับประตูนั้นจะเป็น 2/3 และ ไม่สลับประตูจะเป็น 1/3

หรือ อาจอธิบายได้อีกทางหนึ่งก็คือ สมมุติไว้ก่อนว่าคุณจะสลับประตู ดังนั้นวิธีที่คุณจะได้รถยนต์ก็คือ ต้องเลือกประตูที่ไม่มีรถยนต์อยู่ ซึ่งใน 2 ประตูที่ไม่เลือกจะมี 1 ประตูที่มีแพะ และ 1 ประตูที่มีรถยนต์ ประตูที่มีแพะนั้นจะถูกเลือกเปิดโดยผู้ดำเนินรายการ และ เมื่อสลับประตูคุณจะได้รถยนต์ จะเห็นได้ว่าโอกาสที่คุณจะต้องเลือกให้ได้ประตูที่ไม่มีรถยนต์อยู่ในตอนแรกสุดนั้นเป็น 2/3 ซึ่งก็คือโอกาสในการถูกรางวัลรถยนต์ หากสลับประตู

คำอธิบายเพิ่มเติม[แก้]

แผนผังแสดงความน่าจะเป็น[แก้]

Monty hall prob tree.png

ตัวอย่าง[แก้]

สมมุติว่า:

ประตู 1 - รถยนต์
ประตู 2 - แพะ
ประตู 3 - แพะ

กรณีที่ 1: คุณเลือกประตู 1. ผู้ดำเนินรายการเปิดประตู 3 ให้ดูว่าเป็นแพะ ก) คุณอยู่กับประตู 1 = คุณชนะ ข) คุณสลับไปประตู 2 = คุณแพ้

กรณีที่ 2: คุณเลือกประตู 2. ผู้ดำเนินรายการเปิดประตู 3 ให้ดูว่าเป็นแพะ ก) คุณอยู่กับประตู 2 = คุณแพ้ ข) คุณสลับไปประตู 1 = คุณชนะ

กรณีที่ 3: คุณเลือกประตู 3. ผู้ดำเนินรายการเปิดประตู 2 ให้ดูว่าเป็นแพะ ก) คุณอยู่กับประตู 3 = คุณแพ้ ข) คุณสลับไปประตู 1 = คุณชนะ

จะเห็นได้ว่าถ้าคุณสลับประตู คุณจะมีโอกาสชนะ 2/3 ครั้ง หรือ 66.66% แต่ถ้าคุณอยู่กับประตูเดิม คุณจะมีโอกาสชนะ 1/3 ครั้ง หรือ 33.33%

by nawapong n.

ทฤษฎีของเบย์[แก้]

ให้

Open_i: ผู้ดำเนินรายการเปิดประตู หมายเลข i
Car_i: รถยนต์อยู่หลังประตูหมายเลข i

การวิเคราะห์ความน่าจะเป็นตามทฤษฎีของเบย์ สมมุติในตอนแรกผู้เล่นเลือกประตูหมายเลข 3 ความน่าจะเป็นที่รถยนต์อยู่หลังประตูหมายเลข 2 คือ P(Car_2) มีค่าเท่ากับ 1/3 จากนั้นความน่าจะเป็นที่ผู้ดำเนินรายการจะเปิดประตูหมายเลข 1 P(Open_1) มีค่าเท่ากับ 1/2 คือเลือกจากประตูหมายเลข 1 หรือ 2 แต่จากข้อมูลที่ผู้ดำเนินรายการมีอยู่ ผู้ดำเนินรายการจะไม่เปิดประตูที่มีรถยนต์อยู่ด้านหลัง ดังนั้น ในกรณีที่รถยนต์อยู่หลังประตูหมายเลข 2 ผู้ดำเนินจะถูกบังคับให้เปิดประตูหมายเลข 1 ซึ่งก็คือ P(Open_1|Car_1) = 0 และ P(Open_1|Car_2) = 1 และ ความน่าจะเป็นที่รถยนต์จะอยู่หลังประตูหมายเลข 2 ถ้าหากผู้ดำเนินรายการเลือกเปิดประตูหมายเลข 1 คือ

P(Car_2|Open_1) = \frac{P(Car_2 \cap Open_1)}{P(Open_1)}
 = \frac{P(Open_1|Car_2)P(Car_2)}{P(Open_1|Car_1)P(Car_1)+P(Open_1|Car_2)P(Car_2)+P(Open_1|Car_3)P(Car_3)}
 = \frac{ 1 \cdot \frac{1}{3} } { 0 \cdot \frac{1}{3} + 1 \cdot \frac{1}{3} + \frac{1} {2} \cdot \frac{1}{3} } = 
 \frac{\frac{1}{3} }{ 0  + \frac{1}{3} + \frac{1}{6} } =  \frac{2}{3} \;

ซิมูเลชัน[แก้]

นอกเหนือจากวิธีการคำนวณหาความน่าจะเป็นที่จะได้รถยนต์ข้างต้น เราสามารถทำการทดลองซิมูเลชัน ของการเล่นเกม โดยเป็นการทดลองเสมือนการเล่นเกมหลายๆ ครั้ง แล้วดูสัดส่วนของจำนวนเกมที่เล่นได้รถยนต์ในกรณีต่างๆ ซึ่งจาก กฎจำนวนมาก (law of large numbers) ค่าสัดส่วนนี้จะเป็นค่าประมาณของความน่าจะเป็น ผลลัพธ์ด้านล่างนี้ได้จากการประมวลผลโปรแกรม ซิมูเลชันโดยโปรแกรมภาษาเพิร์ล เป็นจำนวน 3000 รอบ (นอกจากนี้ยังมีเป็น รุ่นภาษาจาวา, รุ่นภาษาซี และ รุ่นภาษาซีพลัสพลัส):

Playing 3000 games...
Grand totals:
Sticker has won 1013 times
Switcher has won 1987 times

สัดส่วนการชนะราลวัลรถยนต์ คือ 33.8%(หากไม่เปลี่ยน) และ 66.2%(หากเปลี่ยน) ด้วยขอบเขตความผิดพลาดประมาณ 2% ซึ่งค่าที่ได้นี้ใกล้เคียงกับค่าตามทฤษฎี