การบวกเมทริกซ์

จากวิกิพีเดีย สารานุกรมเสรี

การบวกเมทริกซ์ ในทางคณิตศาสตร์ เป็นการดำเนินการการบวกบนสองเมทริกซ์ โดยบวกสมาชิกที่สอดคล้องกันเข้าด้วยกันเป็นเมทริกซ์ใหม่

ผลบวกแยกสมาชิก[แก้]

การบวกเมทริกซ์โดยทั่วไปจะนิยามให้เมทริกซ์สองเมทริกซ์มีมิติเท่ากัน ผลบวกของเมทริกซ์ A และ B ที่มีมิติ m×n เขียนแทนด้วย A + B และได้ผลลัพธ์ออกมาเป็นเมทริกซ์ขนาด m×n ที่มีสมาชิกเป็นผลบวกบนตำแหน่งที่ตรงกัน ตัวอย่างเช่น

ส่งผ่านค่าไม่ได้ (ไม่ทราบฟังก์ชันนี้): {\displaystyle \begin{bmatrix} 1 & 3 \\ 1 & 0 \\ 1 & 2 \end{bmatrix} + \begin{bmatrix}บบบบบบบบบบบลบบบบล 0 & 0 \\ 7 & 5 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 1+0 & 3+0 \\ 1+7 & 0+5 \\ 1+2 & 2+1 \end{bmatrix} = \begin{bmatrix} 1 & 3 \\ 8 & 5 \\ 3 & 3 \end{bmatrix} }

เรายังสามารถดำเนินการการลบบนเมทริกซ์สองเมทริกซ์ได้ ตราบใดที่ยังมีมิติเท่ากัน การลบเมทริกซ์เขียนแทนด้วย AB จะได้เมทริกซ์ที่มีสมาชิกเป็นผลลบบนตำแหน่งที่ตรงกัน ตัวอย่างเช่น

เอกลักษณ์การบวกของเมทริกซ์คือเมทริกซ์ศูนย์ ดังตัวอย่างต่อไปนี้

ผลบวกโดยตรง[แก้]

การดำเนินการการบวกอีกอย่างหนึ่งซึ่งมีที่ใช้น้อยกว่า คือการบวกโดยตรง เราสามารถบวกเมทริกซ์ A มิติ m×n กับเมทริกซ์ B มิติ p×q ได้โดยไม่จำเป็นต้องมีมิติเท่ากัน ผลลัพธ์จะออกมาเป็นเมทริกซ์ที่มีมิติ (m + p) × (n + q) ตามที่นิยามไว้ดังนี้

ดังตัวอย่างต่อไปนี้

การบวกแบบนี้ไม่มีคุณสมบัติการสลับที่ ลองพิจารณาตัวอย่างนี้เทียบกับข้างบน

คุณสมบัติ[แก้]

แหล่งข้อมูลอื่น[แก้]