แนวฉาก

จากวิกิพีเดีย สารานุกรมเสรี
แนวฉากสำหรับจุดบนพื้นผิวหาได้จากเส้นแนวฉากของระนาบสัมผัสที่สัมผัสพื้นผิวตรงจุดนั้น
ภาพแสดงแนวฉากทั้งสองค่าของโพลีกอน

แนวฉาก (อังกฤษ: normal) ในทางเรขาคณิต หมายถึงวัตถุอย่างเช่นเส้นตรงหรือเวกเตอร์ที่ตั้งฉากกับวัตถุที่กำหนด ตัวอย่างเช่น กรณีสองมิติ เส้นแนวฉาก (normal line) ของเส้นโค้ง คือเส้นตรงที่ตั้งฉากกับเส้นสัมผัสเส้นโค้ง ณ จุดนั้น กรณีสามมิติ แนวฉากของพื้นผิว (surface normal) ที่จุด P คือเวกเตอร์ที่ตั้งฉากกับระนาบสัมผัสพื้นผิว ณ จุด P ซึ่งเรียกว่า เวกเตอร์แนวฉาก (normal vector)

ในคอมพิวเตอร์กราฟิกส์สามมิตินิยมใช้แนวฉากกำหนดมุมระหว่างทิศทางที่พื้นผิวหันไปทำกับทิศทางของต้นกำเนิดแสงเพื่อเพื่อคำนวณการสะท้อนแบบ flat shading หรือใช้กำหนดที่มุมแต่ละมุมของพื้นผิวโพลีกอน (vertex normal) เพื่อใช้เกลี่ยแนวฉากของสองพื้นผิวที่ติดกันเข้าหากัน ทำให้พื้นผิวที่ทำมุมกันสามารถสะท้อนแสดงได้เหมือนกับเป็นพื้นผิวเรียบโค้ง (phong shading)

การคำนวณหาแนวฉาก[แก้]

การหาแนวฉากของโพลีกอน สามารถหาได้จากผลคูณไขว้ของเวกเตอร์ขอบสองด้านที่ไม่ขนานกันของโพลีกอน แนวฉากจะมีสองแนวซึ่งชี้ไปในทิศทางตรงข้ามกัน จึงอาจใช้กฎมือขวาร่วมกำหนดทิศทางที่แนวฉากหรือหน้าของโพลีกอนหันไป

ถ้าระนาบเกิดจากสมการ ax+by+cz=d เวกเตอร์  (a, b, c) จะเป็นแนวฉากของระนาบ ถ้าพื้นผิว (ที่อาจไม่เรียบ) S ถูกพาราเมไทรซ์ในระบบพิกัดเชิงเส้นโค้ง x (s, t) โดยจำนวนจริง s และ t แนวฉากจะหาได้จากผลคูณไขว้ของอนุพันธ์บางส่วน

{\partial \mathbf{x} \over \partial s}\times {\partial \mathbf{x} \over \partial t}

การใช้งาน[แก้]

คอมพิวเตอร์กราฟิกส์สามมิติ[แก้]

สนามเวกเตอร์ของแนวฉากบนพื้นผิว
vertex normal กับการเปลี่ยนแปลงการสะท้อนของพื้นผิว (a) vertex normal ชี้ไปทิศทางเดียวกับ surface normal (b) vertex normal ชี้ไปในทิศทางเดียวกับ vertex normal ของพื้นผิวข้างเคียง การสะท้อนแสงจึงต่อเนื่องเสมือนเป็นพื้นผิวเดียวกัน

ในงานคอมพิวเตอร์กราฟิกส์สามมิติ แนวฉากและกฎมือขวาใช้กำหนดว่าโพลีกอนจะหันไปในทิศทางใดและจะสะท้อนแสงอย่างไร ทั้งนี้แนวฉากจะถูกนำมาใช้ในการกำหนดการสะท้อนหรือหักเหแสงของพื้นผิว และอาจจะไม่ตั้งฉากกับพื้นผิวจริงก็ได้

  • Vertex normal : ซอฟต์แวร์สำหรับเร็นเดอร์ภาพอาจคำนวณแนวฉากของพื้นผิวจากค่า vertex normal เช่นในโพลีกอนสามเหลี่ยมจะกำหนดค่า vertex normal สามค่าให้ vertex ทั้งสามมุม โดยจะเป็นค่าเวกเตอร์ที่ไม่จำเป็นต้องตั้งฉากกับพื้นผิวโพลีกอนเพื่อมาใช้คำนวณสนามเวกเตอร์ของแนวฉากของพื้นผิวโพลีกอน เช่นถ้ามีโพลีกอนสองชิ้นวางติดกัน แล้วกำหนด vertex normal ของทั้งสองชิ้นให้วิ่งไปทิศทางเดียวกับแนวฉากของพื้นผิว รอยต่อของโพลีกอนจะแสดงรอยหยักตามขอบ แต่ถ้า vertexให้ normal วิ่งไปทางเดียวกับ vertex normal ของพื้นผิวโพลีกอนข้างเคียง การสะท้อนของโพลีกอนชิ้นแรกจะถูกเกลี่ยเข้าหาการสะท้อนของโพลีกอนข้างเคียง ทำให้มองดูเสมือนเป็นพื้นผิวเรียบโค้ง

ทัศนศาสตร์เชิงเรขาคณิต[แก้]

แนวฉากกับการสะท้อน โดยมุมตกกระทบ (θi) จะมีค่าเท่ากับมุมสะท้อน (θr)

ใน ทัศนศาสตร์เชิงเรขาคณิต แนวฉาก คือเส้นที่ตั้งฉากกับพื้นผิว[1] ของตัวกลางต่างๆ คำว่า normal ในที่นี้ใช้ในแง่ของคณิตศาสตร์ หมายถึงการตั้งฉาก โดยในการสะท้อนของแสง มุมตกกระทบ หมายถึงมุมระหว่างแนวฉากกับทิศทางที่แสงวิ่งเข้า ขณะที่ มุมสะท้อน คือมุมระหว่างแนวฉากกับทิศทางที่แสงสะท้อนออกไป

ดูเพิ่ม[แก้]

อ้างอิง[แก้]

  1. "The Law of Reflection" (HTML). The Physics Classroom Tutorial. สืบค้นเมื่อ 2008-03-31.