เศรษฐกิจไฮโดรเจน
บทความนี้ยังต้องการเพิ่มแหล่งอ้างอิงเพื่อพิสูจน์ความถูกต้อง |
เศรษฐกิจไฮโดรเจน เป็นระบบที่ถูกนำเสนอเพื่อนำไฮโดรเจนมาใช้เป็นพลังงานแทนพลังงานจากฟอสซิล มีผู้สนับสนุนในเรื่องนี้เป็นจำนวนมาก ในการใช้เป็นเชื้อเพลิงขับเคลื่อนยานพาหนะ เป็นพลังงานในอาคารและอุปกรณ์อิเล็คโทรนิคส์ต่างๆ แต่ไฮโดรเจนอิสระไม่ได้เกิดขึ้นเองตามธรรมชาติ ต้องสกัดออกมาจากสารอื่น มีวิธีสกัดหลายวิธี ดังนั้น ความเป็นไปได้ในการนำมาใช้ ขึ้นอยู่กับกรรมวิธีในการผลิตว่ามีแหล่งผลิตจากที่ใด ผลกระทบต่อสิ่งแวดล้อมเป็นอย่างไร และเป็นการผลิตพลังงานที่ยั่งยืนหรือไม่
เหตุผล
[แก้]ไฮโดรเจนถูกนำเสนอเพื่อที่จะแก้ปัญหาผลกระทบทางด้านลบอันเนื่องมาจากการใช้เชื้อเพลิงที่เป็นไฮโดรคาร์บอน
ในสถาวะปัจจุบัน การขนส่งต้องใช้เชื้อเพลิงปิโตรเลียมเป็นหลัก ทำให้เกิดคาร์บอนไดอ๊อกไซด์และมลภาวะอื่นๆ ความต้องการเชื้อเพลิงไฮโดรคาร์บอนเพิ่มมากขึ้นอย่างต่อเนื่องจากประเทศจีน อินเดีย และประเทศที่กำลังพัฒนาทั้งหลาย
ผู้สนับสนุนในการนำไฮโดรเจนมาใช้ให้เหตุผลว่า จะช่วยลดผลกระทบจากมลพิษได้มากถ้าสามารถผลิตไฮโดรเจนได้ในจุดที่ใช้งานได้เลย
ไฮโดรเจนให้พลังงานต่อหน่วยสูง การนำไปใช้กับเครื่องสันดาปภายใน อาจให้ประสิทธิภาพสูงถึง 38% สูงกว่าการใช้แก๊สโซลีนกว่า 8% ถ้าใช้ทั้งเซลล์เชื้อเพลิงและมอเตอร์ไฟฟ้า จะได้ประสิทธิภาพสูงกว่าเครื่องสันดาปภายใน 2-3 เท่า แต่เซลล์เชื้อเพลิงมีราคาสูงมาก ประมาณ 165,000 บาทต่อกิโลวัตต์ (ราคาในปี 2002) มีประสิทธิภาพในทางเทคนิคแต่ไม่มีประสิทธิภาพทางเศรษฐศาสตร์[1]
ปัญหาอีกอย่างหนึ่งคือประเด็นทางด้านการเก็บรักษาและความบริสุทธ์ของไฮโดรเจนเมื่อนำมาใช้กับเซลล์เชื้อเพลิง ด้วยเทคโนโลยีปัจจุบัน เซลล์เชื้อเพลิงต้องการไฮโดรเจนบริสุทธ์ถึง 99.9999%
ภาพรวม: ตลาดไฮโดรเจนในปัจจุบัน
[แก้]อุตสาหกรรมการผลิตไฮโดรเจนใหญ่และกำลังเจริญเติบโต ในปี 2004 มีการผลิตไฮโดรเจนถึง 57 ล้านตัน เทียบเท่ากับน้ำมันดิบ 170 ล้านตัน หรือพลังงาน 248.7 GW อัตราเพิ่ม 10% ต่อปี มูลค่าการผลิตไฮโดรเจน ในสหรัฐปี 2005 เท่ากับ 135 พันล้านเหรียญ
ไฮโดรเจนถูกนำไปใช้เป็นสองลักษณะใหญ่ๆคือ ใช้ผลิตแอมโมเนีย(NH3) เพื่อใช้ทำปุ๋ยเพื่อการเกษตรและอีกลักษณะคือใช้เปลี่ยนปิโตรเลียมหนักให้เบาลงเพื่อนำมาเป็นเชื้อเพลิง(hydrocracking) ยิ่งราคาน้ำมันมีราคาแพง ทำให้บริษัทน้ำมันหันมาผลิตน้ำมันจากสารคุณภาพต่ำเช่น ทรายน้ำมัน และ หินน้ำมัน ปัจจุบันมีผู้ผลิตรายย่อยเกิดขึ้นมาก เป็นการผลิตและจำหน่ายให้ผู้ใช้โดยตรง
ปัจจุบัน ไฮโดรเจนถูกผลิตจากแก๊สธรรมชาติ 40% จากน้ำมัน 30% จากถ่านหิน 18% จากการแยกน้ำเพียง 4% ใน 4 ขบวนการนี้ แสดงให้เห็นถึงข้อจำกัดทางด้านเทอร์โมไดนามิคส์ที่ทำให้การผลิตไฮโดรเจนโดยวิธีเผาแก๊สธรรมชาติบางส่วนให้ประสิทธิภาพสูงสุด
การผลิต การเก็บรักษา และโครงสร้างพื้นฐาน
[แก้]กรรมวิธีการผลิต
[แก้]การเก็บรักษา
[แก้]โครงสร้างพื้นฐาน
[แก้]เซลล์เชื้อเพลิง: ทางเลือกแทนเครื่องสันดาปภายใน
[แก้]ไฮโดรเจนสามารถเป็นเชี้อเพลิงแทนเชื้อเพลิงจากฟอสซิลได้ ถึงแม้ว่าไฮโดรเจนสามารถใช้ในเครื่องสันดาปภายในได้แต่เซลล์เชื้อเพลิงในฐานะที่เป็นไฟฟ้าเคมี ในทางทฤษฏีแล้วมีข้อได้เปรียบเหนือเครื่องยนต์ความร้อน แต่เซลล์เชื้อเพลิงมีค่าใช้จ่ายในการผลิตสูงกว่าเครื่องสันดาปภายในมาก ถ้าเซลล์เชื้อเพลิงมีราคาใกล้เคียงกับเครื่องสันดาปภายในหรือกังหันแก๊ส โรงไฟฟ้าที่ใช้แก๊สคงหันมาใช้เทคโนโลยีนี้มากขึ้น
แก๊สไฮโดรเจนที่ใช้กับเซลล์เชื้อเพลิงต้องเป็นแบบเกรดสูง ซึ่งจะบริสุทธ์กว่าเกรดธรรมดาถึง 5 เท่า แต่แก๊สไฮโดรเจนเกรดธรรมดาถึงแม้จะมีคาร์บอนและซัลเฟอร์ผสม ก็สามารถผลิตจากขบวนการผลิตแบบ steam reforming ถูกๆได้ เซลล์เชื้อเพลิงต้องการความบริสุทธ์ของไฮโดรเจนสูงมาก เพราะสิ่งสกปรกจะทำให้อายุการทำงานของอุปกรณ์ภายในสั้นลงอย่างรวดเร็ว
ประสิทธิภาพโดยการเป็นเชื้อเพลิงสำหรับยานพาหนะ
[แก้]ด้วยเทคโนโลบีปัจจุบัน การผลิตไฮโดรเจนด้วยวิธีการ steam reforming จะมีประสิทธิภาพราว 75-80% ในการทำให้บริสุทธ์และอัดความดันก็ต้องการพลังงานเพิ่มขึ้น การขนส่งไปสถานีจ่ายด้วยรถบรรทุกหรือมางท่อก็ต้องการพลังงานเพิ่มขึ้น ทั้งหมดนี้รวมแล้วประมาณ 50 MJ/kg ลบด้วยพลังงานของไฮโดรเจน 141 MJ/kg หารด้วยพลังงานมั้งหมด จะได้ประสิทธิภาพพลังงานเหลือเพียง 60% เท่านั้น เปรียบเทียบกับน้ำมันเบนซินที่ผ่านขบวนการผลิตจนถึงผู้บริโภค จะได้ประสิทธิภาพพลังงานถึง 80% แต่ถ้าผลิตเป็นกระแสไฟฟ้าส่งถึงผู้บริโภคจะมีประสิทธิภาพถึง 95% และเครื่องยนต์พลังไฟฟ้ามีประสิทธิภาพมากกว่าเครื่องยนต์พลังไฮโดรเจน 3-4 เท่า
ในการศึกษาประสิทธิภาพตั้งแต่โรงงานถึงผู้ใช้ของยานพาหนะใช้ไฮโดรเจน เปรียบเทียบกับพาหนะอื่นๆในนอร์เวย์พบว่าพาหนะที่ใช้เซลล์เชื้อเพลิงที่ใช้ไฮโดรเจนมีประสิทธิภาพเป็นที่สาม เท่ากับรถไฟฟ้าที่ใช้ electrolysis และพาหนะที่ใช้ไฮโดรเจนกับเครื่องสันดาปภายในมีประสิทธิภาพเป็นที่หก ถึงแม้ว่าจะใช้ไฮโดรเจนจาก reformation แทนที่จะเป็น electrolysis หรือได้รับจากโรงงานแก๊สธรรมชาติ รถไฟฟ้าก็ยังมีประสิทธิภาพราว 25-35% (13% ถ้าเป็นสันดาปภายใน) 14% สำหรับแก๊สโซลีนสันดาปภายใน 27% สำหรับ hybrid 17% สำหรับ ดีเซล
ความปลอดภัย
[แก้]ไฮโดรเจนเป็นแก๊สติดไฟง่าย และไม่มีกลิ่น และสามารถระเบิดรุนแรงได้ ดูบทความความปลอดภัยของไฮโดรเจน
สิ่งแวดล้อม
[แก้]นักสิ่งแวดล้อมกล่าวว่า "ในการแก้ปัญหาแก๊สเรือนกระจก ไฮโดรเจนเป็นทางเลือกที่มีประสิทธิภาพต่ำที่สุด และมีราคาแพงที่สุด" และ "การนำพลังงานที่สกปรกมาฟอกให้สะอาด ไม่ได้แก้ปัญหามลภาวะแต่อย่างใด เพียงแต่ย้ายปัญหาไปรอบๆเท่านั้นเอง"
มีความกังวลหลายเรื่องเกี่ยวกับผลกระทบของการผลิตไฮโดรเจน การนำเชื้อเพลิงฟอสซิลมาทำ reforming ทำให้เกิดคาร์บอนไดอ๊อกไซด์ขึ้นไปบนชั้นบรรยากาศมากกว่าการนำไปใช้โดยตรงกับเครื่องสันดาปภายในเสียอีก ในทางเดียวกัน ถ้าใช้วิธี electrolysis แต่ใช้ไฟฟ้าจากเชื้อเพลิงฟอสซิล ก็ทำให้เกิดคาร์บอนไดอ๊อกไซด์เหมือนกัน
การใช้ไฟฟ้าจากพลังงานทดแทนในกระบวนการ electrolysis ต้องใช้พลังงานมากกว่านำไฟฟ้าไปให้พลังกับรถไฟฟ้า เพราะเกิดการสูญเสียในขบวนการผลิตมีหลายขั้นตอน
เครื่องสันดาปภายในที่ใช้เชื้อเพลิงไฮโดรเจนอาจทำให้เกิดไนตรัสอ๊อกไซด์และมลภาวะอื่นๆ อากาศที่ป้อนเข้าไปในกระบอกสูบมี ไนโตรเจนประมาณ 78% และ โเลกุลของ N2 มีพลังงานผูกมัดอยู่ 226 กิโลแคลอรี/mol ปฏิกิริยาของไฮโดรเจนมีพลังมากพอที่จะแยกการผูกมัดนี้ และทำให้เกิดส่วนประกอบที่ไม่ต้องการ เช่น กรดไนตริค (HNO3) และแก๊สไฮโดรเจนไซยาไนด์ (HCN) ซึ่งเป็นพิษทั้งสองตัว สารประกอบไนโตรเจนที่ออกมาจากเครื่องสันดาปภายในเป็นต้นเหตุของหมอกและควัน ไฮโดรเจนที่ใช้ในการขนส่งจะใช้เซลล์เชื้อเพลิง ซึ่งไม่ทำให้เกิดแก๊สเรือนกระจก ผลิตแต่น้ำ
ยังมีข้อกังวลในเรื่องความเป็นไปได้ของการรั่วไหลของแก๊สไฮโดรเจนที่อาจสร้างปัญหาได้ โมเลกุลของไฮโดรเจนรั่วออกจากภาชนะที่ใส่มันอยู่เสมอ สันนิษฐานว่าแก๊สไฮโดรเจนอาจเปลี่ยนรูปเป็นธาตุดั้งเดิมของมัน คือ H ในชั้นสตราโตสเฟีย และกลายเป็นตัวเร่งให้โอโซนหายไป อย่างไรก็ตามปัญหานี้ อาจไม่ส่งผลอย่างมีนัยสำคัญ ปริมาณของไฮโดรเจนที่รั่วไหล มีน้อยกว่าที่มีการคาดการณ์ไว้มาก ตัวอย่างเช่น ในเยอรมนี อัตราการรั่วมีประมาณ 0.1% เท่านั้น (น้อยกว่าแก๊สธรรมชาติรั่วที่ 0.7%) อย่างมากสุด ก็ไม่เกิน 1% ด้วยเทคโนโลยีปัจจุบัน
ค่าใช้จ่าย
[แก้]ไฮโดรเจนที่มีความบริสุทธ์สูง ต้องใช้พลังไฟฟ้ามากกว่า 35 kWh หรือ 35x9.36=327.6 Mega Joule เพื่อผลิตไฮโดรเจน 1 kg (141 MJ) แสดงว่า พลังงานที่ใช้ในการผลิตมากกว่าพลังงานที่ได้รับ
ท่อส่งไฮโดรเจนแพงกว่าสายส่งไฟฟ้า ไฮโดรเจนมีปริมาตรมากกว่าแก๊สธรรมชาติถึง 3 เท่าในปริมาณความร้อนที่ผลิตได้เท่าๆกัน ไฮโดรเจนทำให้เหล็กเปราะเร็ว ทำให้ค่าใช้จ่ายในการซ่อมบำรุงสูง อัตราการรั่วเพิ่ม และค่าวัสดุสูง
การจัดตั้งให้เป็นยุคไฮโดรเจน ต้องลงทุนสูงด้านโครงสร้างพื้นฐานในการเก็บรักษาและแจกจ่ายไปให้รถ ตรงข้ามกับรถไฟฟ้าที่ใช้แบตเตอรีซึ่งพร้อมใช้งานอยู่แล้ว ไม่ต้องขยายโครงสร้างพื้นฐานอะไรเพื่อทำสายส่งและจำหน่าย เพราะโรงไฟฟ้าปัจจุบันมีไฟฟ้าเหลือใช้ในเวลากลางคืนมาก อาจพอเพียงสำหรับการชาร๋จแบตเตอรีของรถทุกคันถ้าเปลี่ยนมาเป็นรถไฟฟ้า
ไฮโดรเจน-ทางเลือกแทนที่จะเป็นยุคไฮโดรเจนสมบูรณ์แบบ
[แก้]เศรษฐกิจแอมโมเนีย
[แก้]ทางเลือกที่จะใช้ไฮโดรเจนในทางอื่นนอกจากเป็นเชื้อเพลิงคือนำไปผสมกับไนโตรเจนเพื่อผลิตแอมโมเนีย ทำให้ง่ายต่อการทำเป็นของเหลว ง่ายต่อการขนส่ง และง่ายต่อการนำไปใช้ ไม่ว่าทางตรงหรือทางอ้อม โดยใช้เป็นเชื้อเพลิงสะอาดและหมุนเวียน
นำไปผลิตแอลกอฮอล์
[แก้]ผลิตไฟฟ้าเข้าสายส่ง และเซลล์เชื้อเพลิงเมทานอลสังเคราะห์
[แก้]ตามยุทธศาสตร์ในการผลิตหลากหลาย สามารถผลิตเชื้อเพลิงได้หลายอย่างง่ายกว่าและอาจจะมีประสิทธภาพกว่าผลิตแต่ไฮโดรเจนเพียงอย่างเดียว ตัวเก็บพลังงานระยะสั้น (หมายถึงเก็บแล้วใช้เลย) อาจทำเป็นแบตเตอรีหรือตัวเก็บประจุยิ่งยวด ตัวเก็บพลังงานระยะยาว (หมายถึงเก็บไว้แต่ยังไม่ใช้) อาจทำด้วยมีเทนหรือแอลกอฮอล์สังเคราะห์ ใช้งานกับรถไฟฟ้า
ดูเพิ่ม
[แก้]- Energy portal
- Renewable energy portal
- Sustainable development portal
- United States Hydrogen Policy
- Alternative fuel
- Biobased economy
- Energy development
- Fuel Cells and Hydrogen Joint Technology Initiative
- HOPE Curriculum (Hydrogen Outreach Program for Education)
- Hydrogen energy plant in Denmark
- Qazvin hydrogen power plant
- Hydrogen internal combustion engine vehicle
- Hydrogen prize
- ยานพาหนะพลังไฮโดรเจน
- International Centre for Hydrogen Energy Technologies
- International Journal of Hydrogen Energy
- Lolland Hydrogen Community