ข้ามไปเนื้อหา

ผลต่างระหว่างรุ่นของ "ไทม์โดเมนรีเฟลกโตมิเตอร์"

จากวิกิพีเดีย สารานุกรมเสรี
เนื้อหาที่ลบ เนื้อหาที่เพิ่ม
Roonie.02 (คุย | ส่วนร่วม)
→‎อ้างอิง: ส่วนประกอบ
ป้ายระบุ: แก้ไขจากอุปกรณ์เคลื่อนที่ แก้ไขจากเว็บสำหรับอุปกรณ์เคลื่อนที่
บรรทัด 101: บรรทัด 101:


[[หมวดหมู่:ฟิสิกส์ของดิน]]
[[หมวดหมู่:ฟิสิกส์ของดิน]]
ข้ามไปยังเนื้อหาหลัก
Microsoft Build
Microsoft Docs
ไดเรกทอรี Docs
Windows
Microsoft Azure
Visual Studio
Office
Microsoft 365
.NET
ASP.NET
SQL
Enterprise Mobility Security
Microsoft Surface
Dynamics 365
Xamarin
Azure DevOps
System Center
Powershell
Microsoft Graph
Microsoft Education
Gaming
ไดเรกทอรี Docs
.NET
การ์ดที่ปรับเปลี่ยนได้
ASP.NET
Azure
ศูนย์สถาปัตยกรรม Azure
Azure Bot Service
Azure DevOps
Azure IoT Central
Azure Sphere
Bing Maps
Biztalk Server
C++
C#
Cloud Adoption Framework สำหรับ Azure
Cognitive Toolkit (CNTK)
Common Data Service
Cortana Skills
การบริการแดชบอร์ด
Dynamics 365
Enterprise Mobility + Security
Entity Framework
Exchange
F#
HealthBot
HealthVault
Internet Information Services
Microsoft 365 Business
Microsoft 365 Enterprise
โฆษณา Microsoft
Microsoft Edge
Microsoft Education
โปรแกรมจัดการการกำหนดค่า Microsoft Endpoint
ตัวจัดการ Microsoft Endpoint
Microsoft FastTrack
Microsoft Forms Pro
Microsoft Graph
Microsoft HPC Pack 2016
Microsoft Kaizala
Microsoft Intune
Microsoft Lifecycle Policy
Microsoft Machine Learning Server
Microsoft Managed Desktop
Microsoft Quantum Development
Microsoft Search
Microsoft Security
Microsoft Security Response Center
Microsoft Stream
Microsoft Surface
Microsoft Teams
Microsoft Workplace Analytics และ MyAnalytics
ML.NET
NuGet
Office
Office 365
OneDrive
เปิดข้อมูลจำเพาะ
PlayReady
Power Apps
Power Automate
Power BI
Power Platform
Power Query
PowerShell
Power Virtual Agents
โครงการ
SharePoint
Skype for Business
SQL Server
System Center
การจำลองเสมือน
Visual Basic
Visual Studio
Visual Studio App Center
Visual Studio IDE
Windows
Xamarin
Yammer
ทรัพยากร
การเรียนรู้ผ่านวิดีโอ
การเริ่มต้น
นักเรียน
ตัวอย่างโค้ด
ไทย
Docs เวอร์ชันก่อนหน้า บล็อก สนับสนุน สิทธิ์ส่วนบุคคล & คุกกี้ ข้อกำหนดการใช้ ไซต์คำติชม เครื่องหมายการค้า © Microsoft 2020

รุ่นแก้ไขเมื่อ 19:10, 24 พฤษภาคม 2563

ทามโดเมนรีเฟลกโตมิเตอร์สำหรับตรวจหาจุดเสียของ เคเบิล
สัญญาณที่ส่งผ่านเข้าไปและสะท้อนออกมาจากจุดที่สายขาด

ทามโดเมนรีเฟลกโตมิเตอร์ (อังกฤษ: Time-Domain Reflectometer) หรือ TDR เป็นเครื่องมืออิเล็กทรอนิกส์ที่ใช้การวัดสัญญาณสะท้อนกลับด้วยขอบเขตของเวลา (อังกฤษ: time-domain reflectometry) เพื่อหาลักษณะเฉพาะและจุดเสียในสายเคเบิลโลหะ (ตัวอย่างเช่น สายคู่บิด หรือ สายแกนร่วม)[1] มันยังสามารถนำไปใช้ในการค้นหาหน้าสัมผัสที่ bad contact ในหัวเชื่อมต่อ (อังกฤษ: connector), ใน แผงวงจรพิมพ์ หรือเส้นทางไฟฟ้​​าอื่น ๆ อุปกรณ์เทียบเท่าที่ใช้กับ ใยแก้วนำแสง เรียกว่า optical time-domain reflectometer หรือ OTDR

คำอธิบาย

TDR จะวัดการสะท้อนกลับของสัญญาณภายในสายไฟตัวนำ เพื่อที่จะวัดการสะท้อนเหล่านั้น TDR จะส่งสัญาณไฟฟ้าตกกระทบขนาดหนึ่งเข้าไปในสายไฟตัวนำนั้นและฟังสัญญาณสะท้อนกลับ ถ้าตัวนำมีอิมพีแดนซ์สม่ำเสมอและมีการบรรจบปลาย (อังกฤษ: terminate) อย่างเหมาะสม ดังนั้นมันจะไม่มีการสะท้อนกลับและสัญญาณตกกระทบที่เหลือจะถูกดูดซับที่ปลายสายจากการบรรจบสายนั้น แต่ในทางตรงกันข้าม ถ้ามีการเปลี่ยนแปลงในอิมพีแดนซ์ บางส่วนของสัญญาณตกกระทบจะสะท้อนกลับไปยังแหล่งกำเนิดของมัน TDR จะมีหลักการคล้ายกับเรดาร์

การสะท้อนกลับ

โดยทั่วไปสัญญาณที่สะท้อนกลับมาจะมีรูปร่างเหมือนสัญญาณที่ตกกระทบ แต่เครื่องหมายและขนาดของมันจะขึ้นอยู่กับการเปลี่ยนแปลงของอิมพีแดนซ์ ถ้าอิมพีแดนซ์เพิ่ม สัญญาณสะท้อนกลับจะมีเครื่องหมายเดียวกันกับสัญญาณที่ตกกระทบ; ถ้าอิมพีแดนซ์ลดลง ที่สะท้อนกลับจะมีเครื่องหมายตรงกันข้าม ขนาดของสัญญาณสะท้อนกลับจะไม่เพียงแต่ขึ้นอยู่กับปริมาณของการเปลี่ยนแปลงของอิมพีแดนซ์เท่านั้น แต่ยังขึ้นอยู่กับค่าการสูญเสียพลังงานในตัวนำอีกด้วย

การสะท้อนกลับสามารถวัดได้เป็นอัตราส่วนส่งออก/นำเขัา โดย TDR จะแสดงหรือพล็อตในแกนของเวลา อีกวิธีหนึ่งก็คือการแสดงผลสามารถอ่านได้เป็นค่าของความยาวของสายเคเบิล เพราะความเร็วของสัญญาณที่วิ่งเข้าไปในสายตัวนำเกือบจะคงที่สำหรับตัวกลางที่ใช้ในการส่งสัญญาณหนึ่ง ๆ

เพราะความไวของการเปลี่ยนแปลงอิมพีแดนซ์ ทำให้ TDR สามารถนำมาใช้ในการตรวจสอบคุณลักษณะด้านอิมพีแดนซ์ของสายเคเบิ้ล, การบรรจบปลายสายแบบหลอมละลาย (อังกฤษ: fusion splicing) และตำแหน่งของคอนเนกเตอร์ และการสูญเสียพลังงานที่เกี่ยวข้อง, และความยาวโดยประมาณของสายเคเบิล

สัญญาณตกกระทบ

TDR ใช้สัญญาณตกกระทบได้หลายแบบที่แตกต่างกัน TDR บางตัวส่งสัญญาณชีพจร เข้าไปในตัวนำ; ความละเอียดของเครื่องมือดังกล่าวมักจะเป็นความกว้างของพัลส์ พัลส์ที่แคบสามารถให้ความละเอียดที่ดีแต่ความถี่สูงสามารถลดทอนสัญญาณในสายเคเบิลที่ยาว รูปร่างของพัลส์มักจะเป็นคลื่นซายน์ครึ่งรอบ[2] สำหรับสายที่ยาวขึ้น จะใชัพัลส์ที่กว้างกว่า

มีการนำคลื่นขั้นบันไดที่มี เวลาขึ้น (อังกฤษ: rise time) ที่เร็วมากมาใช้ แทนที่จะมองหาสัญญาณสะท้อนที่เป็นพัลส์เต็มรูป TDR จะสนใจเฉพาะขอบขึ้น (อังกฤษ: rising edge) ที่จะเร็วมาก ๆ[3] TDR ที่ใช้เทคโนโลยีของทศวรรษที่ 1970 ใช้คลื่นขั้นบันไดที่มีเวลาขึ้นเท่ากับ 25 ps.[4][5][6]

TDR บางตัวยังคงใช้วิธีการส่งสัญญาณที่ซับซ้อนและตรวจจับการสะท้อนด้วย correlation techniques ดูทามโดเมนรีเฟลกโตมิเตอร์แบบกระจายสเปกตรัม

ตัวอย่างเส้นวาด

เส้นวาดต่อไปนี้สร้างโดยทามโดเมนรีเฟลกโตมิเตอร์ที่ทำจากเครื่องมือทั่วไปในห้องปฏิบัติการ มีการเชื่อมต่อเข้ากับสายเคเบิลแกนร่วมยาวประมาณ 100 ฟุต (30 เมตร) ที่มีค่า อิมพีแดนซ์ลักษณะ เท่ากับ 50 โอห์ม ความเร็วการกระจายสำหรับเคเบิลประเภทนี้อยู่ที่ประมาณ 66% ของความเร็วแสงในสูญญากาศ

เส้นวาดต่อไปนี้สร้างขึ้นโดยเครื่อง TDR ในทางพานิชย์โดยใช้คลื่นขั้นบันไดที่มีเวลาขึ้นเท่ากับ 25 ps และหัวเก็บตัวอย่าง (อังกฤษ: sampling head) ที่มีเวลาขึ้นเท่ากับ 35 ps และสายเคเบิลแกนร่วมมีหัวเป็น SMA (RF Coaxial connector) ที่มีความยาว 18-นิ้ว (0.46-เมตร)[7] ปลายสายของเคเบิ้ลถูกปล่อยให้เปิดหรือต่ออยู่กับอะแดปเตอร์อื่นที่แตกต่างกัน มันต้องใช้เวลาประมาณ 3 นาโนวินาทีสำหรับพัลส์ที่จะเดินทางไปถึงปลายเคเบิล สะท้อนกลับ และเดินทางกลับมาถึงหัวเก็บตัวอย่าง สัญญาณสะท้อนกลับตัวที่สอง (ที่ประมาณ 6 ns) อาจมองเห็นได้ในบางเส้นวาดเนื่องจากการสะท้อนกลับอาจมองเห็นการไม่แมทช์กันขนาดเล็กที่หัวเก็บตัวอย่างซึ่งทำให้เกิดคลื่น "ตกกระทบ" อีกตัวหนึ่งที่จะเดินทางไปที่ปลายสาย

คำอธิบาย

เมื่อพิจารณาถึงกรณีที่ปลายสุดของสายเคเบิล คู่สายทั้งสองถูกช๊อตเข้าหากัน (นั่นคือบรรจบกันทำให้อิมพีแดนซ์มีค่าเป็นศูนย์โอห์ม) เมื่อขอบขึ้นของพัลส์ถูกส่งเข้าไปในสายเคเบิล แรงดันไฟฟ้าที่จุดป้อนเข้าจะ "โดดขึ้น" ไปที่ค่าที่กำหนดทันทีทันใดและพัลส์ก็เริ่มต้นที่จะกระจายไปตามความยาวของสายเคเบิลไปยังปลายสาย เมื่อพัลส์กระทบกับจุดที่ช๊อต พลังงานจะไม่ถูกดูดซับที่ปลายสุด แทนที่จะมีการดูดซับ พัลส์จะสะท้อนจากจุดช๊อตกลับมาที่ต้นทาง เมื่อพัลส์สะท้อนกลับนี้กลับไปถึงต้นทาง มันเป็นเวลาเดียวกับที่แรงดันไฟฟ้าที่จุดนั้นลดลงไปทันทีทันใดกลับไปที่ศูนย์ เป็นการส่งสัญญาณความจริงที่ว่ามีการช๊อตที่ปลายของสายเคเบิล นั่นคือ TDR จะไม่เห็นว่ามีการช๊อตที่ปลายของสายเคเบิลจนกระทั่งพัลส์ที่มันปล่อยออกไปสามารถเดินทางไปตามสายเคเบิลที่ประมาณความเร็วของแสงและการสะท้อนสามารถเดินทางกลับมาที่จุดเริ่มต้นที่ความเร็วเดียวกัน มันก็เป็นเพราะการล่าช้าในการเดินทางไปกลับนี้เท่านั้นที่ TDR สามารถรับรู้ถึงการช๊อตได้ สมมติว่าเรารู้ความเร็วในการแพร่กระจายสัญญาณในสายเคเบิลที่อยู่ภายใต้การทดสอบ ดังนั้นด้วยวิธีนี้ระยะทางไปยังจุดที่ช๊อตก็สามารถวัดได้

ผลที่คล้ายกันจะเกิดขึ้นถ้าปลายสุดของสายเคเบิลเป็นวงจรเปิด (ถูกบรรจบแบบให้อิมพีแดนซ์มีค่าเป็นอนันต์) แต่ในกรณีนี้การสะท้อนจากปลายสุดจะมีขั้วเดียวกันกับพัลส์เดิม ดังนั้นหลังจากที่มีการล่าช้าในการเดินทางไปกลับ แรงดันที่ TDR จึงแสดงเส้นวาดออกมาเป็นพัลส์สองตัวมีค่าเท่ากัน

โปรดสังเกตุว่าถ้ามีการบรรจบอย่างสมบูรณ์แบบในทางทฤษฎีที่ปลายสุดของสายเคเบิล พัลส์ที่ใส่เข้าไปในเคเบิลจะดูดซึมอย่างหมดสิ้น จึงไม่ก่อให้เกิดการสะท้อนใด ๆ ในกรณีนี้มันจะเป็นไปไม่ได้ที่จะวัดความยาวจริงของสายเคเบิล โชคดีที่การบรรจบอย่างสมบูรณ์แบบนี้สามารถหาได้ยากมากและการสะท้อนขนาดเล็กบางส่วนจะเกิดขึ้นได้เกือบตลอดเวลา

ขนาดของการสะท้อนจะถูกเรียกว่าค่าสัมประสิทธิ์การสะท้อนหรือ ρ มีช่วงจาก 1 (วงจรเปิด) ถึง -1 (ลัดวงจร) ค่าเป็นศูนย์หมายถึงว่าไม่มีการสะท้อน ค่าสัมประสิทธิ์การสะท้อนสามารถคำนวณได้ดังนี้:

เมื่อ Zo ถูกกำหนดให้เป็นอิมพีแดนซ์ลักษณะของตัวกลางการส่งและ Zt เป็นอิมพีแดนซ์ที่ปลายสุดของสายส่ง

จุดขาดบนสายเคเบิลใด ๆ สามารถมองว่าเป็นอิมพีแดนซ์ของการบรรจบและถูกแทนค่าด้วย Zt ซึ่งรวมถึงการอย่างกระทันหันในอิมพีแดนซ์ลักษณะของสายเคเบิลนั้นด้วย ตัวอย่างเช่นเส้นวาดบน TDR ที่วัดได้ที่ช่วงกลางของแผงวงจรมีความกว้างเป็นสองเท่าอาจหมายถึงสายวงจรขาด บางส่วนของพลังงานจะถูกสะท้อนกลับไปยังแหล่งที่มา; พลังงานที่เหลือจะถูกส่งออกไป ปรากฏการณ์นี้เรียกว่ารอยต่อกระเจิง (อังกฤษ: scattering junction)

ประโยชน์

ทามโดเมนรีเฟลกโตมิเตอร์ถูกใช้ทั่วไปในสถานที่ที่มีการทดสอบสายเคเบิลที่ยาวมาก แต่มันเป็นไปไม่ได้ที่จะขุดหรือรื้อขึ้นมาในสิ่งที่อาจจะเป็นสายเคเบิลที่ยาวหลายกิโลเมตร พวกมันมีความจำเป็นที่จะต้องได้รับการบำรุงรักษาเชิงป้องกันสำหรับสายการสื่อสารโทรคมนาคม โดย TDR สามารถตรวจสอบความต้านทานที่หัวต่อและจุดเชื่อมต่อเนื่องจากการเป็นสนิมและมีการรั่วไหลเพิ่มขึ้นของฉนวนหุ้มเนื่องจากการเสื่อมสมรรถภาพทำให้มีน้ำเข้าไปในหัวต่อ เป็นเวลานานก่อนที่สายไฟภายในเส้นใดเส้นหนึ่งจะล้มเหลวจนเกิดปัญหารุนแรง เมื่อใช้ TDR มันก็เป็นไปได้ที่จะระบุจุดที่เกิดปัญหาภายในระยะเป็นเซนติเมตร

TDR ยังเป็นเครื่องมือที่มีประโยชน์มากอีกด้วยสำหรับมาตรการตอบโต้แบบการเฝ้าระวังทางเทคนิค โดยมันจะช่วยตรวจสอบการดำรงอยู่และสถานที่ตั้งของสายลักลอบเชื่อมต่อเพื่อดักฟัง (อังกฤษ: wire tap) การเปลี่ยนแปลงเล็กน้อยในอิมพีแดนซ์ที่เกิดจากการแทปหรือการประกบสายจะปรากฏขึ้นบนหน้าจอของ TDR เมื่อมีการเชื่อมต่อกับสายโทรศัพท์

อุปกรณ์ TDR ยังเป็นเครื่องมือที่สำคัญในการวิเคราะห์ความล้มเหลวของแผงวงจรพิมพ์ความถี่สูงที่ทันสมัย​ที่​มีเส้นวาดสัญญาณที่สร้างขึ้นมาเพื่อเลียนแบบสายส่ง โดยการสังเกตการสะท้อนกลับ หมุดที่บัดกรีไว้ไม่ดีใด ๆ ของอุปกรณ์แผงกลมของกริดจะสามารถตรวจพบได้ หมุดที่ลัดวงจรก็สามารถตรวจพบได้ในลักษณะคล้ายกัน

หลักการ TDR ถูกใช้ในการตั้งค่าทางอุตสาหกรรม ในสถานการณ์ที่หลากหลายเช่นการทดสอบของแพคเกจวงจรรวมเพื่อวัดระดับของของเหลว ในการทดสอบของแพคเกจวงจรรวม TDR จะใช้เพื่อแยกจุดที่ล้มเหลวในแพคเกจเดียวกัน ในการวัดระดับของของเหลวส่วนใหญ่จะจำกัดตามกระบวนการทางอุตสาหกรรม

TDR ในการตรวจวัดระดับ

ในอุปกรณ์ตรวจวัดระดับที่ีพื้นฐานจาก TDR อุปกรณ์นั้นจะสร้างแรงกระตุ้น (อังกฤษ: impulse) ที่แพร่กระจายลงท่อนำคลื่นชนิดบาง (ที่เรียกว่าหัววัด (อังกฤษ: probe)) ซึ่งโดยปกติจะเป็นแท่งโลหะหรือสายเคเบิลเหล็ก เมื่อแรงกระตุ้นนี้กระทบผิวหน้าของสื่อกลางที่จะทำการวัด ส่วนหนึ่งของแรงกระตุ้นจะสะท้อนกลับมาที่ท่อนำคลื่น อุปกรณ์จะกำหนดระดับของเหลวโดยการวัดความแตกต่างของเวลาระหว่างเวลาที่ส่งแรงกระตุ้นออกไปกับเวลาที่สะท้อนกลับมา ตัวรับรู้สามารถส่งระดับที่วิเคราะห์ได้ออกเป็นสัญญาณแอนาล็อกอย่างต่อเนื่องหรือสัญญาณเอ้าพุทแบบสลับ ในเทคโนโลยีของ TDR, ความเร็วของแรงกระตุ้นจะได้รับผลกระทบเป็นหลักโดยค่า permittivity ของตัวกลางที่พัลส์แพร่กระจายผ่านเข้าไป ซึ่งสามารถแตกต่างกันอย่างมากตามความชื้นและอุณหภูมิของตัวกลาง ในหลายกรณี ผลกระทบนี้สามารถแก้ไขได้โดยไม่ยากเกินควร ในบางกรณีเช่นในสภาพแวดล้อมที่อุณหภูมิสูงและ/หรือเดือด การแก้ไขอาจจะยากลำบาก ในกรณีเฉพาะอย่าง การกำหนดความสูงของฟอง (โฟม) และระดับของของเหลวที่ทรุดตัวลงในตัวกลางที่เป็นฟอง/เดือดอาจจะยากลำบากมาก

TDR ใช้ในสายสมอในเขื่อน

กลุ่มสนใจความปลอดภัยของเขื่อนของ CEA Technologies, Inc (CEATI) บริษัทร่วมการงานขององค์กรพลังงานไฟฟ้าแห่งหนึ่ง ได้ใช้ TDR แบบการแพร่กระจายคลื่นเพื่อระบุความผิดพลาดที่อาจเกิดขึ้นในสายสมอเขื่อนคอนกรีต ประโยชน์ที่สำคัญของ TDR ที่เหนือกว่าวิธีการทดสอบแบบอื่นก็คือการทดสอบวิธีนี้เป็นการทดสอบแบบไม่ทำลาย[8]

TDR ใช้ในทางธรณีวิทยาและวิทยาศาสตร์การเกษตร

บทความหลัก: การวัดชิ้นส่วนที่ชื้นโดยการใช้ TDR

TDR จะใช้ในการตรวจสอบชิ้นส่วนที่ชื้นในดินและตัวกลางที่มีรูพรุน มากกว่าสองทศวรรษที่ผ่านมา มีความก้าวหน้าที่สำคัญในการวัดความชื้นในดิน, ในเมล็ดพืช, ในสิ่งที่เกี่ยวข้องกับอาหาร, และในตะกอน กุญแจสู่ความสำเร็จของ TDR ก็คือความสามารถของมันในการตรวจสอบอย่างแม่นยำใน permittivity (ค่าไดอิเล็กทริกคงที่) ของวัสดุจากการกระจายคลื่น, เนื่องจากความสัมพันธ์ที่แข็งแกร่งระหว่าง permittivity ของวัสดุกับปริมาณน้ำของมัน อย่างที่ได้แสดงให้เห็นในผลงานบุกเบิกของ Hoekstra และ Delaney (1974)

และกลุ่มเพื่อนของ Topp (1980) ความคิดเห็นล่าสุดและงานอ้างอิงของเนื้อเรื่องจะรวมถึง Topp และเรโนลด์ (1998), Noborio (2001), Pettinellia และเพื่อน (2002), Topp และ Ferre (2002) และโรบินสันและเพื่อน (2003) วิธี TDR เป็นเทคโนโลยีสายส่งอย่างหนึ่ง และเป็นตัวกำหนด permittivity (Ka) อย่างชัดเจนจากเวลาในการเดินทางของคลื่นแม่เหล็กไฟฟ้าที่แพร่กระจายไปตามสายส่ง มักจะเป็นแท่งโลหะสองแท่งหรือมากกว่าที่ขนานกันฝังอยู่ในดินหรือตะกอน โพรบมักจะมีความยาวระหว่าง 10 ถึง 30 ซม. และเชื่อมต่อกับ TDR ผ่านสายโคแอกเซียล

TDR ในการใช้งานปฐพี

TDR ยังได้ถูกนำมาใช้ในการเฝ้าดูการเคลื่อนไหวของความลาดชันในระบบธรณีเทคนิคที่หลากหลายที่รวมทั้งรอยตัดบนทางหลวง, เนินรองรับรางรถไฟ, และเหมืองหลุมเปิด (Dowding และโอคอนเนอร์, 1984, 2000a, 2000b; Kane & Beck, 1999) ในการใช้เพื่อตรวจสอบความมั่นคงโดยการใช้ TDR สายเคเบิลแกนร่วมจะนำมาติดตั้งในหลุมเจาะแนวตั้งที่เจาะผ่านพื้นที่ที่กังวล ค่าอิมพีแดนซ์ทางไฟฟ้าที่จุดใด ๆ ตามแแนวสายแกนร่วมจะเปลี่ยนไปตามความผิดปกติของฉนวนระหว่างสายตัวนำทั้งสอง สารยาแนวที่เปราะจะล้อมรอบเคเบิลเพื่อแปลการเคลื่อนไหวของแผ่นดินให้เป็นความผิดปกติของสายเคเบิลอย่างกระทันหันที่จะแสดงขึ้นมาเป็นจุดสูงสุดที่ตรวจพบได้ในเส้นวาดการสะท้อน จนกระทั่งเมื่อเร็ว ๆ นี้ เทคนิคนี้รู้สึกว่าค่อนข้างจะไม่ไวต่อการเคลื่อนไหวของความลาดชันที่มีขนาดเล็กและไม่สามารถทำให้การวัดเป็นไปโดยอัตโนมัติเพราะมันต้องพึ่งพามนุษย์ในการตรวจสอบการเปลี่ยนแปลงเพื่อตามรอยการสะท้อนตลอดช่วงเวลา นาย Farrington และ Sargand (2004) ได้พัฒนาเทคโนโลยีการประมวลผลสัญญาณง่าย ๆ ขึ้นมาชิ้นหนึ่งโดยใช้อนุพันธ์ตัวเลขเพื่อที่จะแยกตัวชี้วัดที่น่าเชื่อถือของการเคลื่อนไหวของความลาดชันจากข้อมูลของ TDR มันทำงานได้รวดเร็วกว่าการตีความแบบโบราณที่ใช้กันอยู่ทั่วไป

การใช้งานอีกอย่างหนึ่งของ TDRs ในด้านวิศวกรรมปฐพีเทคนิคคือการกำหนดเนื้อหาความชื้นในดิน ซึ่งสามารถทำได้โดยการวาง TDR แต่ละตัวในชั้นดินที่แตกต่างกันและทำการวัดเวลาของการเริ่มต้นของการตกของหยาดน้ำฟ้าและเวลาที่ TDR บ่งบอกถึงการเพิ่มขึ้นในเนื้อหาของความชื้นในดิน ความลึกของ TDR (d) เป็นปัจจัยที่รู้แล้ว และอีกปัจจัยหนึ่งคือเวลาที่ใช้ของน้ำที่หยดลงที่จะไปถึงความลึก (t); ดังนั้นความเร็วของการแทรกซึมของน้ำ (อุทกวิทยา) (v) จะสามารถกำหนดได้ นี้เป็นวิธีการที่ดีสำหรับการประเมินประสิทธิภาพของวิธีการจัดการที่ดีที่สุด (BMPs) ในการลดพื้นที่การพังทลายของผิวหน้าดินเนื่องจากการไหลบ่าของน้ำฝน

TDR ในการวิเคราะห์อุปกรณ์สารกึ่งตัวนำ

TDR ที่ใช้ในการวิเคราะห์ความล้มเหลวของสารกึ่งตัวนำเป็นวิธีการที่ไม่ทำลายสำหรับตำแหน่งของข้อบกพร่องต่าง ๆ ในแพคเกจอุปกรณ์สารกึ่งตัวนำ TDR จะมอบลายเซ็นไฟฟ้าของร่องรอยสื่อกระแสไฟฟ้าแต่ละอย่างในแพคเกจอุปกรณ์และมันเป็นประโยชน์สำหรับการกำหนดตำแหน่งของวงจรเปิดและวงจรช๊อตทั้งหลาย

TDR ในการบำรุงรักษาสายไฟในอากาศยาน

TDR โดยเฉพาะอย่างยิ่ง TDR แบบแพร่กระจายคลื่น ถูกใช้ในการการบำรุงรักษาเชิงป้องกันสไหรับสายไฟในอากาศยาน รวมทั้งการหาตำแหน่งของจุดผิดพลาด[9] TDR แบบแพร่กระจายคลื่นมีความได้เปรียบตรงที่มีความแม่นยำในการกำหนดตำแหน่งของความผิดปกติภายในหลายพันไมล์ของการเดินสายไฟในอากาสยาน นอกจากนี้เทคโนโลยีนี้คุ้มค่าในการพิจารณาเพื่อนำมาใช้ในการเฝ้าดูแบบเวลาจริงของอากาศยานเพราะการสะท้อนแบบแพร่กระจายคลื่นความถี่สามารถทำงานในสายที่มีไฟ

วิธีการนี​​้้ได้แสดงให้เห็นว่ามีประโยชน์ในการกำหนดตำแหน่งของความผิดพลาดทางไฟฟ้าที่เกิดแบบไม่สม่ำเสมอ[10]

อ้างอิง

  1. This article incorporates public domain material from the General Services Administration document "Federal Standard 1037C".
  2. 1983 Tektronix Catalog, pages 140–141, the 1503 uses "1/2-sine-shaped pulses" and has a 3-foot resolution and a range of 50,000 feet.
  3. 1983 Tektronix Catalog, pages 140–141, the 1502 uses a step (system rise time less than 140 ps), has a resolution of 0.6 inch and a range of 2,000 feet.
  4. 1983 Tektronix Catalog, page 289, S-52 pulse generator has a 25-ps risetime.
  5. S-6 Sampling Head, Instruction Manual, Beaverton, OR: Tektronix, September 1982 First printing is 1982, but copyright notice includes 1971.
  6. 7S12 TDR/Sampler, Instruction Manual, Beaverton, OR: Tektronix, November 1971
  7. Hamilton Avnet part number P-3636-603-5215
  8. C. Furse, P. Smith, M. Diamond, “Feasibility of Reflectometry for Nondestructive Evaluation of Prestressed Concrete Anchors,” IEEE Journal of Sensors, Vol. 9. No. 11, Nov. 2009, pp. 1322 - 1329
  9. Smith, P., C. Furse, and J. Gunther, 2005. "Analysis of spread spectrum time domain reflectometry for wire fault location". IEEE Sensors Journal 5:1469–1478.
  10. Furse, Cynthia, Smith, P.,Safavi, Mehdi, and M. Lo, Chet. "Feasibility of Spread Spectrum Sensors for Location of Arcs on Live Wires". IEEE Sensors Journal. December 2005.

ข้ามไปยังเนื้อหาหลัก Microsoft Build Microsoft Docs ไดเรกทอรี Docs Windows Microsoft Azure Visual Studio Office Microsoft 365 .NET ASP.NET SQL Enterprise Mobility Security Microsoft Surface Dynamics 365 Xamarin Azure DevOps System Center Powershell Microsoft Graph Microsoft Education Gaming ไดเรกทอรี Docs .NET การ์ดที่ปรับเปลี่ยนได้ ASP.NET Azure ศูนย์สถาปัตยกรรม Azure Azure Bot Service Azure DevOps Azure IoT Central Azure Sphere Bing Maps Biztalk Server C++ C# Cloud Adoption Framework สำหรับ Azure Cognitive Toolkit (CNTK) Common Data Service Cortana Skills การบริการแดชบอร์ด Dynamics 365 Enterprise Mobility + Security Entity Framework Exchange F# HealthBot HealthVault Internet Information Services Microsoft 365 Business Microsoft 365 Enterprise โฆษณา Microsoft Microsoft Edge Microsoft Education โปรแกรมจัดการการกำหนดค่า Microsoft Endpoint ตัวจัดการ Microsoft Endpoint Microsoft FastTrack Microsoft Forms Pro Microsoft Graph Microsoft HPC Pack 2016 Microsoft Kaizala Microsoft Intune Microsoft Lifecycle Policy Microsoft Machine Learning Server Microsoft Managed Desktop Microsoft Quantum Development Microsoft Search Microsoft Security Microsoft Security Response Center Microsoft Stream Microsoft Surface Microsoft Teams Microsoft Workplace Analytics และ MyAnalytics ML.NET NuGet Office Office 365 OneDrive เปิดข้อมูลจำเพาะ PlayReady Power Apps Power Automate Power BI Power Platform Power Query PowerShell Power Virtual Agents โครงการ SharePoint Skype for Business SQL Server System Center การจำลองเสมือน Visual Basic Visual Studio Visual Studio App Center Visual Studio IDE Windows Xamarin Yammer ทรัพยากร การเรียนรู้ผ่านวิดีโอ การเริ่มต้น นักเรียน ตัวอย่างโค้ด ไทย Docs เวอร์ชันก่อนหน้า บล็อก สนับสนุน สิทธิ์ส่วนบุคคล & คุกกี้ ข้อกำหนดการใช้ ไซต์คำติชม เครื่องหมายการค้า © Microsoft 2020