กำหนดการเชิงเส้น

จากวิกิพีเดีย สารานุกรมเสรี

กำหนดการเชิงเส้น เป็นคณิตศาสตร์ประยุกต์แขนงหนึ่งที่คิดค้นขึ้น เพื่อแก้ปัญหาให้เป็นไปตามจุดประสงค์ของมนุษย์ โดยมีแนวคิดที่ว่า ให้เพียงพออย่างสูงสุดในทรัพยากรที่มีจำกัด สามารถใช้คำนวณเพื่อแก้ปัญหาได้หลายอย่าง เช่น คำนวณการผลิตสินค้าให้ได้มากที่สุด แต่เสียค่าใช้จ่ายน้อยที่สุด,หาวิธีการเคลื่อนย้ายทหารให้มากที่สุดโดยที่เสียค่าใช้จ่ายน้อยที่สุด, ผลิตสินค้าจำนวนน้อยที่สุด แต่ทำกำไรได้มากที่สุด หรือหาว่า หากบริษัทหนึ่งผลิตสินค้า 2 ประเภท ต้องผลิตอย่างละกี่ชิ้นจึงจะได้กำไรสูงสุด เป็นต้น

กำหนดการเชิงเส้น จะอยู่ในรูปแบบทางคณิตศาสตร์ของสมการเชิงเส้นและอสมการเชิงเส้น แล้วหาค่าสูงสุด ต่ำสุดของฟังก์ชันที่สอดคล้องกับสมการ (และอสมการ) ที่กำหนด ตัวแบบคณิตศาสตร์ประกอบด้วย

  • ฟังก์ชันเชิงเส้น เป็นสมการที่สร้างให้ตรงกับจุดประสงค์ที่ต้องการ เรียกฟังก์ชันนี้ว่า ฟังก์ชันเป้าหมาย โดยจะตั้งสมการขึ้นเพื่อหาค่าสูงสุด หรือต่ำสุด ขึ้นอยู่กับตัวแปร เช่น D = 15x+20y
  • เงื่อนไขจำกัด (เงื่อนไขบังคับ) ได้แก่อสมการ หรือสมการที่เป็นเงื่อนไขที่กำหนดให้ เป็นเงื่อนไขที่ถูกจำกัดของทรัพยากร หรือตัวแปร เช่น 2x+y<=100, x>=0 , y>=0,x+2y<=80

การแก้ปัญหาโจทย์กำหนดการเชิงเส้น[แก้]

  • กำหนดตัวแปรที่ใช้ในฟังก์ชันเป้าหมายว่า x แทนตัวแปรอะไร y แทนตัวแปรอะไร
  • สร้างฟังก์ชันเป้าหมายให้สอดคล้องกับที่โจทย์ต้องการ โดยเขียนแบบจำลองทางคณิตศาสตร์
  • สร้างเงื่อนไขบังคับตามข้อมูลที่โจทย์สั่ง
  • หาผลลัพธ์โดยวิธีที่ดีและง่ายที่สุดคือ การเขียนกราฟตามเงื่อนไขบังคับ
  • เมื่อเขียนกราฟแล้ว ให้แรเงาอาณาบริเวณที่เป็นไปได้ ต่อไปให้หาผลลัพธ์ หรือคำตอบที่ดีที่สุดจากคำตอบในอาณาบริเวณที่แรเงานี้ โดยการแทนค่าจุดยอดมุมของรูปเหลี่ยมที่ปิดล้อมบริเวณที่แรเงาไว้ ส่วนที่แรเงาของกราฟ จะเป็นคำตอบที่เป็นไปได้ และค่า (x,y) ที่ทำให้ฟังก์ชันเชิงเส้นมีค่าสูงสุด จะเรียกว่า คำตอบที่เหมาะสมที่สุด
  • หาพิกัด (x,y) ที่เป็นจุดตัดของกราฟ นำแต่ละจุดไปแทนค่าในฟังก์ชันเป้าหมาย จะได้ค่าสูงสุดหรือต่ำสุดตามต้องการ

ข้อควรระวัง[แก้]

  • ถ้าโจทย์ถามเกี่ยวกับคำตอบที่เหมาะสม คำตอบที่เหมาะสมจะเป็นจุดมุมของกราฟของคำตอบที่เป็นไปได้
  • ในกรณีที่หาจุด (x,y) ซึ่งคำตอบที่เหมาะสมที่สุดได้ 2 จุด เช่น จุด A(x1,y1) B(x2,y2) จะได้ว่า จุดที่อยู่ระหว่างจุด A กับ B จะเป็นคำตอบที่เหมาะสมด้วย
  • โจทย์บางข้ออาจไม่มีคำตอบที่เหมาะสมที่สุด

อ้างอิง[แก้]

กำหนดการเชิงเส้น

กำหนดการเชิงเส้น