ผู้ใช้:Thitut/ทดลองเขียน/เส้นคาร์แมน

จากวิกิพีเดีย สารานุกรมเสรี
เส้นคาร์แมนอยู่ภายใน เทอร์โมสเฟียร์ส่วนล่าง (ไม่ตรงตามขนาด)[1]

เส้นคาร์แมน คือความพยายามในการกำหนดขอบเขตระหว่าง บรรยากาศของโลก และ อวกาศ.[2] นี่เป็นสิ่งสำคัญสำหรับมาตรการทางกฎระเบียบและกฎหมาย สำหรับเครื่องบินและยานอวกาศที่ตกอยู่ภายใต้เขตอำนาจศาลที่แตกต่างกันและอยู่ภายใต้สนธิสัญญาที่แตกต่างกัน

สหพันธ์กีฬาทางอากาศนานาชาติ, an international standard-setting and record-keeping body for aeronautics and astronautics, defines the Kármán line as the altitude of 100 กิโลเมตร (62 ไมล์; 330,000 ฟุต) above Earth's mean sea level. Other organizations do not use this definition. For instance, the US Air Force and NASA define the limit to be 50 ไมล์ (80 กิโลเมตร) above sea level.[3] There is no international law defining the edge of space, and therefore the limit of national airspace.[3]

The line is named after Theodore von Kármán (1881–1963), a Hungarian American engineer and physicist, who was active primarily in aeronautics and astronautics. He was the first person to calculate the altitude at which the atmosphere becomes too thin to support aeronautical flight and arrived at 83.6 km (51.9 ไมล์) himself.[4] The reason is that a vehicle at this altitude would have to travel faster than orbital velocity to derive sufficient aerodynamic lift to support itself.[5]: 84  The line is approximately at the turbopause, above which atmospheric gases are not well-mixed. The mesopause atmospheric temperature minimum has been measured to vary from 85 to 100 km, which places the line at or near the bottom of the thermosphere.

ความเห็นของคาร์แมน[แก้]

ในบทสุดท้ายของอัตตชีวประวัติของเขา คาร์แมนได้กล่าวถึงประเด็นเรื่องขอบอวกาศ ดังนี้:

จุดที่อวกาศเริ่มขึ้น… จิง ๆ แล้วสามารถกำหนดได้จากความเร็วของยานอวกาศและระดับความสูงเหนือพื้นโลก ลองพิจารณาตัวอย่างนี้ บันทึกเที่ยวบินของ กัปตันไอเวน คาร์ล คินเชย์โลย์ จูเนียร์]] ในเครื่องบินจรวด X-2 คินเชย์โลย์บินที่ความเร็ว 2000 ไมล์ต่อชั่วโมง (3,200 km/h) ที่ความสูง 126,000 ฟุต (38,500 m), หรือความสูง 24 ไมล์ ที่ความสูงและความเร็วนี้, [แรงยกทางอากาศพลศาสตร์]]ยังรับน้ำหนัก 98 ต่อร้อยของเครื่องบินอยู่, และน้ำหนักเพียงแค่ 2 ต้อร้อยเท่านั้นที่ถูกรบโดยแรงหนีศูนย์กลาง, หรือแรงเคปเลอร์, อย่างที่นักวิทยาศาสตร์อวกาศเขาเรียกกัน แต่ที่ 300,000 ฟุต (91,440 m) หรือความสูง 57 ไมล์, ความสัมพันธืนี้ถูกย้อนกลับดพราะว่ามันไม่มีอากาศที่จะสร้างแรงยกอีกต่อไป: เพียวแรงหนีศูนย์กลางเท่านั้นที่ยังอยู่ นี่ อย่างแน่นอน คือขอบเขตทางกายภาพ ที่ซึ่งอากาศพลศาสตร์หยุดลง และวิทยาศาสตร์การบินอวกาศเริ่มต้นขึ้น, ดังนั้นผมจึงคิดว่าทำไมจึงจะไม่เป็นเป็นเขตอำนาจศาลด้วย? เฮลีย์ได้เรียกมันอย่างกรุณาว่า เส้นเขตอำนาจศาลคาร์แมน ใต้เส้นนี้พื้นที่เป็นของแต่ละประเทศ เหนือเส้นนี้จะเป็นพื้นที่เสรี[6]

คำจำกัดความ[แก้]

An atmosphere does not abruptly end at any given height but becomes progressively thinner with altitude. Also, depending on how the various layers that make up the space around the Earth are defined (and depending on whether these layers are considered part of the actual atmosphere), the definition of the edge of space could vary considerably: If one were to consider the thermosphere and exosphere part of the atmosphere and not of space, one might have to extend the boundary to space to at least 10,000 km (6,200 ไมล์) above sea level. The Kármán line thus is an arbitrary definition based on the following considerations:

An aircraft can only stay aloft by constantly traveling forward relative to the air (rather than the ground), so that the wings can generate lift. The thinner the air, the faster the plane must go to generate enough lift to stay up. The amount of lift provided (which must equal the vehicle's weight in order to maintain level flight) is calculated by the lift equation:[7][8]

where

L is the lift force
ρ is the air density
v is the aircraft's speed relative to the air
S is the aircraft's wing area,
CL is the lift coefficient.[9]

Lift (L) generated is directly proportional to the air density (ρ). All other factors remaining unchanged, true airspeed (v) must increase to compensate for less air density (ρ) at higher altitudes.

An orbiting spacecraft only stays in the sky if the centrifugal component of its movement around the Earth is enough to balance the downward pull of gravity. If it goes slower, the pull of gravity gradually makes its altitude decrease. The required speed is called orbital velocity, and it varies with the height of the orbit. For example, the mean orbital velocity of the International Space Station is 27,600 km (17,100 mi) per hour at a mean altitude of 409 กิโลเมตร (254 ไมล์)*.

For an aircraft flying higher and higher, the increasingly thin air provides less and less lift, requiring increasingly higher speed to create enough lift to hold the airplane up. It eventually reaches an altitude where it must fly so fast to generate lift that it reaches orbital velocity. The Kármán line is the altitude where the speed necessary to aerodynamically support the airplane's full weight equals orbital velocity (assuming typical wing loading and lift coefficient for an airplane). In practice, supporting full weight wouldn't be necessary to maintain altitude because the curvature of the Earth adds centrifugal lift as the airplane reaches orbital speed. However, the Kármán line definition ignores this effect because orbital velocity is implicitly sufficient to maintain any altitude regardless of atmospheric density. The Kármán line is therefore the highest altitude at which orbital speed provides sufficient aerodynamic lift to fly in a straight line that doesn't follow the curvature of the Earth's surface.

Above 100 km the air density is about 1/2,200,000 the density on the surface.[10] At the Kármán line of 300,000 feet (91 km), the air density ρ is such that

where

v0 is the speed of a circular orbit at the same altitude in vacuum
m is the mass of the aircraft (equal to S times the wing loading)
g is the acceleration due to gravity.

Although the calculated altitude was not exactly 100 km, Kármán proposed that 100 km be the designated boundary to space, because the round number is more memorable, and the calculated altitude varies minutely as certain parameters are varied. An international committee recommended the 100 km line to the FAI, and upon adoption, it became widely accepted as the boundary to space for many purposes.[11] However, there is still no international legal definition of the demarcation between a country's air space and outer space.[12]

Another hurdle to strictly defining the boundary to space is the dynamic nature of Earth's atmosphere. For example, at an altitude of 1,000 km (620 ไมล์), the atmosphere's density can vary by a factor of five, depending on the time of day, time of year, AP magnetic index, and recent solar flux.[ต้องการอ้างอิง]

The FAI uses the Kármán line to define the boundary between aeronautics and astronautics:[13]

  • Aeronautics — For FAI purposes, aerial activity, including all air sports, within 100 km of Earth's surface.
  • Astronautics — For FAI purposes, activity more than 100 km above Earth's surface.

การตีความคำจำกัดความ[แก้]

The expression "edge of space", is often used (by, for instance, the FAI in some of their publications)[14] to refer to a region below the conventional 100 km boundary to space, which is often meant to include substantially lower regions as well. Thus, certain balloon or airplane flights might be described as "reaching the edge of space". In such statements, "reaching the edge of space" merely refers to going higher than average aeronautical vehicles commonly would.[15][16]

In 1963 Andrew G. Haley discussed the Kármán line in his book Space Law and Government.[17] In a chapter on the limits of national sovereignty, he made a survey of major writers’ views.[17]: 82–96  He indicated the inherent imprecision of the Line:

The line represents a mean or median measurement. It is comparable to such measures used in the law as mean sea level, meander line, tide line; but it is more complex than these. In arriving at the von Kármán jurisdictional line, myriad factors must be considered – other than the factor of aerodynamic lift. These factors have been discussed in a very large body of literature and by a score or more of commentators. They include the physical constitution of the air; the biological and physiological viability; and still other factors which logically join to establish a point at which air no longer exists and at which airspace ends.[17]: 78, 9 

Alternatives to the definition[แก้]

Atmospheric gases scatter blue wavelengths of visible light more than other wavelengths, giving the Earth's visible edge a blue halo. The Moon is seen behind the halo. At higher and higher altitudes, the atmosphere becomes so thin that it essentially ceases to exist. Gradually, the atmospheric halo fades into the blackness of space.

The U.S. Air Force definition of an astronaut is a person who has flown higher than 50 ไมล์ (80 กิโลเมตร) above mean sea level, approximately the line between the mesosphere and the thermosphere. NASA formerly used the FAI's 100-กิโลเมตร (62-ไมล์) figure, though this was changed in 2005, to eliminate any inconsistency between military personnel and civilians flying in the same vehicle,[18] when three veteran NASA X-15 pilots (John B. McKay, William H. Dana and Joseph Albert Walker) were retroactively (two posthumously) awarded their astronaut wings, as they had flown between 90 km (56 ไมล์) and 108 km (67 ไมล์) in the 1960s, but at the time had not been recognized as astronauts.[15] The latter altitude, achieved twice by Walker, exceeds the modern international definition of the boundary of space.

Recent works by Jonathan McDowell (Harvard-Smithsonian Center for Astrophysics)[19] and Thomas Gangale (University of Nebraska-Lincoln)[20][21] advocate that the demarcation of space should be at 80 km (50 ไมล์; 260,000 ฟุต), citing as evidence von Kármán's original notes and calculations (which concluded the boundary should be 270,000 ft), plus functional, cultural, physical, technological, mathematical, and historical factors.[3][22]

These findings have prompted the FAI to propose holding a joint conference with the International Astronautical Federation (IAF) in 2019 to "fully explore" the issue.[23]

Another definition proposed in international law discussions defines the lower boundary of space as the lowest perigee attainable by an orbiting space vehicle, but does not specify an altitude.[24] This is the definition adopted by the U.S.military.[25]: 13  Due to atmospheric drag, the lowest altitude at which an object in a circular orbit can complete at least one full revolution without propulsion is approximately 150 km (93 ไมล์), whereas an object can maintain an elliptical orbit with perigee as low as about 130 km (81 ไมล์) without propulsion.[ต้องการอ้างอิง]

The US is resisting regulatory movement on this front.[26][27]

สำหรับดาวเคราะห์อื่น ๆ[แก้]

ในขณะที่เส้นคาร์แมนนั้นกำหนดไว้สำหรับโลกเท่านั้น, หากคำนวณสำหรับดาวอังคาร และดาวศุกร์ มันจะอยู่สูงประมาณ 80 km (50 ไมล์) และ 250 km (160 ไมล์) ตามลำดับ[28]

ดูเพิ่ม[แก้]

References[แก้]

  1. Layers of the Atmosphere, National Weather Service JetStream – Online School for Weather
  2. Dr. S. Sanz Fernández de Córdoba (2004-06-24). "The 100 km Boundary for Astronautics". Fédération Aéronautique Internationale. สืบค้นเมื่อ 28 December 2020.
  3. 3.0 3.1 3.2 Voosen, Paul (July 24, 2018). "Outer space may have just gotten a bit closer". Science. doi:10.1126/science.aau8822. สืบค้นเมื่อ April 1, 2019.
  4. Grush, Loren (December 13, 2018). "Why defining the boundary of space may be crucial for the future of spaceflight". The Verge. สืบค้นเมื่อ April 1, 2019.
  5. Donegan, Michelle M. (2009). "Space Basics: Getting to and Staying in Space". ใน Darrin, Ann Garrison; O'Leary, Beth Laura (บ.ก.). Handbook of Space Engineering, Archaeology, and Heritage. Advances in Engineering. CRC Press. pp. 83–89. ISBN 978-1-4200-8431-3.
  6. Theodore von Kármán กับ Lee Edson (1967) The Wind and Beyond, หน้า 343
  7. "Lift Coefficient". Wolfram Alpha Computational Knowledge Engine. Wolfram Alpha LLC. สืบค้นเมื่อ 2015-03-14.
  8. Benson, Tom, บ.ก. (2014-06-12). "The Lift Equation". Glenn Research Center. National Aeronautics and Space Administration. คลังข้อมูลเก่าเก็บจากแหล่งเดิมเมื่อ 2015-03-17. สืบค้นเมื่อ 2015-03-14.
  9. "The Lift Coefficient" เก็บถาวร 2016-10-26 ที่ เวย์แบ็กแมชชีน. Glenn Research Center. NASA. Retrieved May 1, 2015.
  10. Squire, Tom (September 27, 2000), "U.S. Standard Atmosphere, 1976", Thermal Protection Systems Expert and Material Properties Database, NASA, คลังข้อมูลเก่าเก็บจากแหล่งเดิมเมื่อ October 15, 2011, สืบค้นเมื่อ 2011-10-23
  11. "Schneider walks the Walk [A word about the definition of space]". NASA. 2005-10-21. สืบค้นเมื่อ 2008-04-29.
  12. International Law: A Dictionary, by Boleslaw Adam Boczek; Scarecrow Press, 2005; page 239: "The issue whether it is possible or useful to establish a legal boundary between airspace and outer space has been debated in the doctrine for quite a long time. . . . no agreement exists on a fixed airspace – outer space boundary . . ."
  13. Dr. S. Sanz Fernández de Córdoba (2004-06-24). "The 100 km Boundary for Astronautics". Fédération Aéronautique Internationale. สืบค้นเมื่อ 28 December 2020.
  14. https://www.fai.org/news/statement-about-karman-line
  15. 15.0 15.1 "A long-overdue tribute". NASA. 2005-10-21. สืบค้นเมื่อ 2006-10-30.
  16. "World Book @ NASA". NASA. คลังข้อมูลเก่าเก็บจากแหล่งเดิมเมื่อ May 4, 2009. สืบค้นเมื่อ 2006-10-18.
  17. 17.0 17.1 17.2 Andrew G. Haley (1963) Space Law and Government, Appleton-Century-Crofts
  18. "NASA – Schneider walks the Walk". www.nasa.gov (ภาษาอังกฤษ). สืบค้นเมื่อ 19 October 2018.
  19. McDowell, Jonathan C. (2018). "The edge of space: Revisiting the Karman Line". Acta Astronautica. 151: 668–677. arXiv:1807.07894. Bibcode:2018AcAau.151..668M. doi:10.1016/j.actaastro.2018.07.003.
  20. Gangale, Thomas (2017). "The Non Karman Line: An Urban Legend of the Space Age". Journal of Space Law. 41 (2).
  21. Gangale, Thomas (2018). How High the Sky? The Definition and Delimitation of Outer Space and Territorial Airspace in International Law. Studies in Space Law. Vol. 13. Leiden, The Netherlands: Koninklijke Brill NV. doi:10.1163/9789004366022. ISBN 978-90-04-36602-2.
  22. Specktor, Brandon (July 25, 2018). "The Edge of Space Just Crept 12 Miles Closer to Earth". Live Science. สืบค้นเมื่อ April 1, 2019.
  23. "Statement about the Karman Line". World Air Sports Federation. November 30, 2018. สืบค้นเมื่อ April 1, 2019.
  24. "Space Environment and Orbital Mechanics". Army Space Reference Text. United States Army. 2000. คลังข้อมูลเก่าเก็บจากแหล่งเดิมเมื่อ April 18, 2012. สืบค้นเมื่อ April 24, 2012. Where Space Begins: There is no formal definition of where space begins. International law, based on a review of current treaties, conventions, agreements and tradition, defines the lower boundary of space as the lowest perigee attainable by an orbiting space vehicle. A specific altitude is not mentioned. By international law standards aircraft, missiles and rockets flying over a country are considered to be in its national airspace, regardless of altitude. Orbiting spacecraft are considered to be in space, regardless of altitude.
    U.S. definition: The U.S. government defines space in the same terms as international law.
  25. National Security Space Institute in conjunction with U.S. Army Command and General Staff College (2006). U.S. Military Space Reference Text. National Security Space Institute. สืบค้นเมื่อ April 1, 2019 – โดยทาง Homeland Security Digital Library.
  26. King, Matthew T. (2016). "Sovereignty's Gray Area: The Delimitation of Air and Space in the Context of Aerospace Vehicles and the Use of Force". Journal of Air Law and Commerce. 81 (3): 377–497 [p. 432].
  27. "Delegation of the U.S., Statement on the Definition and Delimitation of Outer Space and the Character and Utilization of the Geostationary Orbit, to the Comm. on the Peaceful Uses of Outer Space, Legal Subcomm. of Its Fortieth Session (Apr. 2–13, 2001)". เก็บจากแหล่งเดิมเมื่อ 2020-03-28. สืบค้นเมื่อ 2019-11-21. With respect to the question of the definition and delimitation of outer space, we have examined this issue carefully and have listened to the various statements delivered at this session. Our position continues to be that defining or delimiting outer space is not necessary. No legal or practical problems have arisen in the absence of such a definition. On the contrary, the differing legal regimes applicable in respect of airspace and outer space have operated well in their respective spheres. The lack of a definition or delimitation of outer space has not impeded the development of activities in either sphere.
  28. http://webserver.dmt.upm.es/~isidoro/tc3/Space%20environment.pdf

External links[แก้]

แม่แบบ:Earth's atmosphere แม่แบบ:Extreme motion