ฟังก์ชันเป็นคาบ

จากวิกิพีเดีย สารานุกรมเสรี

ฟังก์ชันเป็นคาบ (periodic function) ในทางคณิตศาสตร์หมายถึงฟังก์ชันที่ให้ผลลัพธ์ออกมาเป็นค่าที่ซ้ำกัน บนช่วงจำกัดหนึ่งๆ เรียกว่า คาบ ซึ่งบวกเข้ากับตัวแปรต้น ตัวอย่างในชีวิตประจำวันจะสามารถเห็นได้จากตัวแปรต้นที่เป็นเวลา เช่นเข็มนาฬิกาหรือข้างขึ้นข้างแรมของดวงจันทร์ จะแสดงพฤติกรรมที่ซ้ำกันเป็นช่วงๆ

นิยาม[แก้]

สำหรับฟังก์ชันบนจำนวนจริงหรือจำนวนเต็มที่ให้ค่าซ้ำกันเป็นช่วงๆ นั่นหมายความว่ากราฟทั้งหมดของฟังก์ชันนั้นสามารถวาดได้จากการคัดลอกกราฟในช่วงที่ซ้ำกันต่อไปเรื่อยๆ หรือในทางที่เจาะจงกว่านี้ ฟังก์ชัน f จะเรียกว่าฟังก์ชันเป็นคาบ บนทุกๆ คาบ P ที่มากกว่าศูนย์ เมื่อ

f(x+P) = f(x)

สำหรับทุกค่าของ x ที่อยู่ในโดเมนของ f

และเมื่อ f เป็นฟังก์ชันเป็นคาบแล้ว จะได้

f(x+nP) = f(x)

สำหรับทุกค่าของ n ที่เป็นจำนวนเต็ม

ตัวอย่าง[แก้]

กราฟของฟังก์ชันไซน์และโคไซน์

จากนิยามข้างต้น หากค่า P เท่ากับ 1 จะได้

f(x) = f(x+1) = f(x+2) = ...

และเนื่องจากคาบของฟังก์ชันไม่จำเป็นต้องเป็นค่าที่น้อยที่สุด ดังนั้นค่า P สามารถเท่ากับ 2 ก็ได้

อีกตัวอย่างหนึ่งสามารถสังเกตได้จากฟังก์ชัน f ที่ให้ผลลัพธ์เป็น "เศษหลังจุดทศนิยม" ของตัวแปรต้น

f(0.5) = f(1.5) = f(2.5) = ... = 0.5

ซึ่งจะมีช่วงที่ซ้ำกันบนคาบ P ที่เท่ากับ 1 และกราฟของฟังก์ชันนี้เป็นรูปคลื่นฟันเลื่อย (sawtooth wave)

ในฟังก์ชันตรีโกณมิติ ไซน์และโคไซน์เป็นฟังก์ชันเป็นคาบอย่างหนึ่ง ซึ่งมีคาบเท่ากับ 2π