ความถ่วงจำเพาะ

จากวิกิพีเดีย สารานุกรมเสรี

ความถ่วงจำเพาะ คืออัตราส่วนระหว่างความหนาแน่นของสสารหนึ่งๆ ต่อความหนาแน่นของน้ำ เมื่อทั้งสองอย่างมีอุณหภูมิเท่ากัน ความถ่วงจำเพาะจึงเป็นปริมาณที่ไร้มิติ (ไม่มีหน่วย) วัตถุที่มีความถ่วงจำเพาะมากกว่าหนึ่ง หมายความว่าวัตถุนั้นมีความหนาแน่นมากกว่าน้ำ ดังนั้นวัตถุนั้นจะจมน้ำ (โดยไม่นับผลจากแรงตึงผิวของน้ำ) ในทางตรงข้าม หากความถ่วงจำเพาะน้อยกว่าหนึ่ง วัตถุนั้นจะลอยน้ำ

ความถ่วงจำเพาะเป็นกรณีหนึ่งของความหนาแน่นสัมพัทธ์ ซึ่งเป็นอัตราส่วนของสสารอย่างอื่นที่อาจไม่ใช่น้ำ และมักใช้แทนความหมายของความถ่วงจำเพาะในงานเขียนทางวิทยาศาสตร์สมัยใหม่ การใช้ความถ่วงจำเพาะไม่เป็นที่นิยมในสาขาวิทยาศาสตร์ที่ต้องการความละเอียดสูง แต่ใช้ความหนาแน่นที่แท้จริงของสสารมากกว่า

ความถ่วงจำเพาะ SG หรือ ถ.พ. สามารถแสดงได้ด้วยสัญลักษณ์ทางคณิตศาสตร์ดังนี้

\mbox{SG} = \frac{\rho_\mathrm{substance}}{\rho_{\mathrm{H}_2\mathrm{O}}}

เมื่อ \rho_\mathrm{substance}\, แทนความหนาแน่นของสสาร และ \rho_{\mathrm{H}_2\mathrm{O}} แทนความหนาแน่นของน้ำ (อักษรกรีก ρ เป็นสัญลักษณ์แทนความหนาแน่น) แต่ความหนาแน่นของน้ำนั้นเปลี่ยนแปรไปตามอุณหภูมิและความดัน จึงกำหนดให้ความถ่วงจำเพาะใช้ความหนาแน่นที่อุณหภูมิ 4°C (39.2°F) และความดันบรรยากาศปกติ 1 atm ซึ่งในกรณีนี้จะได้ \rho_{\mathrm{H}_2\mathrm{O}} เท่ากับ 1000 kg·m−3 ในหน่วยเอสไอ

หากกำหนดความถ่วงจำเพาะของสสารหนึ่งมาให้ ความหนาแน่นที่แท้จริงจึงสามารถคำนวณได้โดยการแปลงสูตรด้านบน

{\rho_\mathrm{substance}} = \mbox{SG} \times \rho_{\mathrm{H}_2\mathrm{O}}

ในบางโอกาส สสารอย่างอื่นที่ถูกอ้างถึงนอกเหนือจากน้ำก็ได้ระบุเอาไว้ (เช่น อากาศ) ซึ่งในกรณีดังกล่าวความถ่วงจำเพาะจะหมายถึงความหนาแน่นที่สัมพันธ์กับสสารนั้นด้วย

เนื่องจากความถ่วงจำเพาะถูกนิยามให้เป็นปริมาณที่ไร้มิติ จึงไม่ขึ้นอยู่กับหน่วยของความหนาแน่นที่ใช้ (ไม่ว่าจะเป็น slugs·ft−3 หรือ kg·m−3) อย่างไรก็ตาม ความหนาแน่นทั้งสองจะต้องสามารถแปลงให้เป็นหน่วยเดียวกันก่อนคำนวณหาอัตราส่วน

ตัวอย่าง[แก้]

ดูเพิ่ม[แก้]

แหล่งข้อมูลอื่น[แก้]

  • Fundamentals of Fluid Mechanics Wiley, B.R. Munson, D.F. Young & T.H. Okishi
  • Introduction to Fluid Mechanics Fourth Edition, Wiley, SI Version, R.W. Fox & A.T. McDonald
  • Thermodynamics: An Engineering Approach Second Edition, McGraw-Hill, International Edition, Y.A. Cengel & M.A. Boles