การหาร

จากวิกิพีเดีย สารานุกรมเสรี

การหาร (อังกฤษ: division) ในทางคณิตศาสตร์ คือ การดำเนินการเลขคณิตที่เป็นการดำเนินการผันกลับของการคูณ และบางครั้งอาจมองได้ว่าเป็นการทำซ้ำการลบ พูดง่ายๆ คือการแบ่งออกหรือเอาเอาออกเท่าๆ กัน จนกระทั่งตัวหารเหลือศูนย์ (หารลงตัว)

ถ้า

a × b = c,

เมื่อ b ไม่เท่ากับ 0 แล้ว

a = c ÷ b

(อ่านว่า "c หารด้วย b") ตัวอย่างเช่น 6 ÷ 3 = 2 เพราะว่า 2 × 3 = 6

ในนิพจน์ข้างบน a คือ ผลหาร, b คือ ตัวหาร และ c คือ ตัวตั้งหาร

นิพจน์ c ÷ b มักเขียนแทนด้วย "c/b" โดยเฉพาะในคณิตศาสตร์ขั้นสูง (รวมถึงการประยุกต์ในวิทยาศาสตร์และวิศวกรรม) และในภาษาโปรแกรม การเขียนแบบนี้ มักใช้แทนเศษส่วน ซึ่งยังไม่ต้องการหาค่า

ในภาษาอื่นๆ ที่ไม่ใช่ภาษาอังกฤษ c ÷ b มักเขียนว่า c : b ซึ่งในภาษาอังกฤษ จะใช้เครื่องหมายทวิภาค (:) เมื่อมันเกี่ยวข้องกับสัดส่วน

สำหรับการหารด้วยศูนย์นั้น ไม่นิยาม

ขั้นตอนการหาร[แก้]

ดูบทความหลักที่: วิธีหารแบบยุคลิด

วิธีหารแบบยุคลิดคือทฤษฎีบทคณิตศาสตร์ที่กล่าวถึงผลลัพธ์จากการหารของจำนวนเต็มปกติไว้อย่างเที่ยงตรง ที่สำคัญทฤษฎีนี้ยืนยันว่าจำนวนเต็มที่เรียกว่าผลลัพธ์ q และเศษ r มีอยู่เสมอและมีเพียงค่าเดียวสำหรับตัวตั้ง a และตัวหาร d โดยที่ d ≠ 0 ทฤษฎีอย่างเป็นรูปนัยกล่าวไว้ดังนี้: มีจำนวนเต็ม q และ r เพียงคู่เดียวที่ a = qd + r และ 0 ≤ r < | d | โดยที่ | d | แทนค่าสัมบูรณ์ของ d

การหารจำนวนจริง[แก้]

การหารจำนวนจริงสองจำนวน จะให้ผลลัพธ์เป็นจำนวนจริง เมื่อตัวหารไม่เท่ากับ 0. นิยามว่า a/b = c ก็ต่อเมื่อ a = cb และ b ≠ 0

ดูเพิ่ม[แก้]