มอเตอร์

จากวิกิพีเดีย สารานุกรมเสรี
การทำงานของมอเตอร์ กระแสไฟฟ้าที่ป้อนเข้าในขดลวดที่พันรอบเหล็กอ่อนบนแกนหมุน(โรเตอร์) ทำให้เกิดอำนาจแม่เหล็กไปดูดหรือผลักกับอำนาจแม่เหล็กถาวรบนตัวนิ่ง(สเตเตอร์) หรือป้อนกลับกัน หรือป้อนทั้งสองที่
มอเตอร์ไฟฟ้าแบบต่างๆเมื่อเทียบกับแบตเตอรี 9V

มอเตอร์ไฟฟ้า (อังกฤษ: electric motor) เป็นอุปกรณ์ไฟฟ้าที่แปลงพลังงานไฟฟ้าเป็นพลังงานกล การทำงานปกติของมอเตอร์ไฟฟ้าส่วนใหญ่เกิดจากการทำงานร่วมกันระหว่างสนามแม่เหล็กของแม่เหล็กในตัวมอเตอร์ และสนามแม่เหล็กที่เกิดจากกระแสในขดลวดทำให้เกิดแรงดูดและแรงผลักของสนามแม่เหล็กทั้งสอง ในการใช้งานตัวอย่างเช่น ในอุตสาหกรรมการขนส่งใช้มอเตอร์ฉุดลาก เป็นต้น นอกจากนั้นแล้ว มอเตอร์ไฟฟ้ายังสามารถทำงานได้ถึงสองแบบ ได้แก่ การสร้างพลังงานกล และ การผลิตพลังงานไฟฟ้า

มอเตอร์ไฟฟ้าถูกนำไปใช้งานที่หลากหลายเช่น พัดลมอุตสาหกรรม เครื่องเป่า ปั๊ม เครื่องมือเครื่องใช้ในครัวเรือน และดิสก์ไดรฟ์ มอเตอร์ไฟฟ้าสามารถขับเคลื่อนโดยแหล่งจ่ายไฟกระแสตรง (DC) เช่น จากแบตเตอรี่, ยานยนต์หรือวงจรเรียงกระแส หรือจากแหล่งจ่ายไฟกระแสสลับ (AC) เช่น จากไฟบ้าน อินเวอร์เตอร์ หรือ เครื่องปั่นไฟ มอเตอร์ขนาดเล็กอาจจะพบในนาฬิกาไฟฟ้า มอเตอร์ทั่วไปที่มีขนาดและคุณลักษณะมาตรฐานสูงจะให้พลังงานกลที่สะดวกสำหรับใช้ในอุตสาหกรรม มอเตอร์ไฟฟ้าที่ใหญ่ที่สุดใช้สำหรับการใช้งานลากจูงเรือ และ การบีบอัดท่อส่งน้ำมันและปั้มป์สูบจัดเก็บน้ำมันซึ่งมีกำลังถึง 100 เมกะวัตต์ มอเตอร์ไฟฟ้าอาจจำแนกตามประเภทของแหล่งที่มาของพลังงานไฟฟ้าหรือตามโครงสร้างภายในหรือตามการใช้งานหรือตามการเคลื่อนไหวของเอาต์พุต และอื่น ๆ

อุปกรณ์เช่นขดลวดแม่เหล็กไฟฟ้าและลำโพงที่แปลงกระแสไฟฟ้าให้เป็นการเคลื่อนไหว แต่ไม่ได้สร้างพลังงานกลที่ใช้งานได้ จะเรียกถูกว่า actuator และ transducer ตามลำดับ คำว่ามอเตอร์ไฟฟ้านั้น ต้องใช้สร้างแรงเชิงเส้น(linear force) หรือ แรงบิด(torque) หรือเรียกอีกอย่างว่า หมุน (rotary) เท่านั้น

ภาพตัดขวางเพื่อแสดงสเตเตอร์ ของมอเตอร์เหนี่ยวนำ

ประวัติ[แก้]

มอเตอร์ในยุคสอง (Motor Two)[แก้]

การทดลองแม่เหล็กไฟฟ้าของฟาราเดย์ในปี 1821[1]

หลักการที่อยู่เบื้องหลังผลิตผลของแรงทางกลของมอเตอร์ก็คือการมีปฏิสัมพันธ์กันของกระแสไฟฟ้าและสนามแม่เหล็กที่มีอยู่ในตัวมอเตอร์ กฎของแอมแปร์ถูกค้นพบโดย อ็องเดร-มารี อ็องแปร์ (André-Marie Ampère) ในปี 1820 การเปลี่ยนแปลงพลังงานไฟฟ้าไปเป็นพลังงานกลโดยวิธีการทางแม่เหล็กไฟฟ้าได้ถูกแสดงให้เห็นโดย ไมเคิล ฟาราเดย์ นักวิทยาศาสตร์ชาวอังกฤษในปี 1821 ลวดแขวนอย่างอิสระถูกจุ่มลงในแอ่งของปรอทซึ่งมีสารแม่เหล็กถาวร (PM) ได้ถูกนำมาวางไว้

เมื่อกระแสไฟฟ้าถูกส่งผ่านไปยังเส้นลวด, เส้นลวดจะถูกหมุนไปรอบ ๆ แม่เหล็กแสดงให้เห็นว่ากระแสไฟฟ้าก่อให้เกิดสนามแม่เหล็กรูปวงกลมปิดรอบเส้นลวด [2] มอเตอร์นี้มักจะถูกแสดงสาธิตให้เห็นในการทดลองทางฟิสิกส์, โดยการใช้น้ำเกลือทดแทนปรอทที่มีความเป็นพิษ แม้ว่าวงล้อบาร์โลว์ (Barlow's wheel) คือการปรับปรุงในช่วงยุคต้น ๆ ของการแสดงสาธิตของฟาราเดย์นี้, มอเตอร์แบบขั้วเหมือน (homopolar motor) เหล่านี้และที่คล้ายคลึงกันจะยังคงพอที่จะประยุกต์ใช้ในทางปฏิบัติได้จนกระทั่งถึงในช่วงปลายศตวรรษ

ในปี 1827 นักฟิสิกส์ชาวฮังการี อานาโยส เยดลิค (Ányos Jedlik) เริ่มการทดลองกับขดลวดแม่เหล็กไฟฟ้า (electromagnetic coil)

โครงสร้างมอเตอร์[แก้]

โรเตอร์ (ซ้าย) และ สเตเตอร์ (ขวา)

โรเตอร์[แก้]

บทความหลัก: Rotor (electric)

ในมอเตอร์ไฟฟ้า ส่วนที่เคลื่อนที่คือโรเตอร์ ซึ่งจะหมุนเพลาเพื่อจ่ายพลังงานกล โรเตอร์มักจะมี ขดลวดตัวนำพันอยู่โดยรอบ ซึ่งเมื่อมีกระแสไหลผ่าน จะเกิดอำนาจแม่เหล็กที่จะไปทำปฏิกิริยากับ สนามแม่เหล็กถาวรของสเตเตอร์ ขับเพลาให้หมุนได้ อย่างไรก็ตามโรเตอร์บางตัวจะเป็นแม่เหล็กถาวรและสเตเตอร์จะมีขดลวดตัวนำสลับที่กัน

ส่วนประกอบของโรเตอร์

สเตเตอร์[แก้]

บทความหลัก: Stator

จะเป็นส่วนที่อยู่กับที่ซึ่งจะประกอบด้วยโครงของมอเตอร์  แกนเหล็กสเตเตอร์  และขดลวด

ช่องว่างอากาศ[แก้]

บทความหลัก: air-gap

ระหว่างโรเตอร์และสเตเตอร์จะเป็นช่องว่างอากาศ ซึ่งจะต้องมีขนาดเล็กที่สุดเท่าที่จะเป็นไปได้ ช่องว่างขนาดใหญ่จะมีผลกระทบทางลบอย่างมากต่อประสิทธิภาพการทำงานของมอเตอร์ไฟฟ้า

ขดลวด[แก้]

บทความหลัก: Windings

ขดลวดจะพันโดยรอบเป็นคอยล์ ปกติจะพันรอบแกนแม่เหล็กอ่อนที่เคลือบฉนวน เพื่อให้เป็นขั้วแม่เหล็กเมื่อมีกระแสไฟฟ้าไหลผ่าน

มอเตอร์ไฟฟ้ามีขั้วสนามแม่เหล็กในสองรูปแบบ ได้แก่แบบขั้วที่เห็นได้ชัดเจนและแบบขั้วที่เห็นได้ไม่ชัดเจน ในขั้วที่ชัดเจน สนามแม่เหล็กของขั้วจะถูกผลิตโดยขดลวดพันรอบแกนด้านล่าง ในขั้วที่ไม่ชัดเจน หรือเรียกว่าแบบสนามแม่เหล็กกระจาย หรือแบบรอบๆโรเตอร์ ขดลวดจะกระจายอยู่ในช่องบนแกนรอบโรเตอร์ มอเตอร์แบบขั้วแฝงมีขดลวดรอบส่วนหนึ่งของขั้วเพื่อหน่วงเฟสของสนามแม่เหล็กของขั้วนั้นให้ช้าลง

มอเตอร์บางตัวขดลวดเป็นโลหะหนากว่า เช่นแท่งหรือแผ่นโลหะที่มักจะเป็นทองแดง บางทีก็เป็น อะลูมิเนียม มอเตอร์เหล่านี้โดยปกติจะถูกขับเคลื่อนโดยการเหนี่ยวนำของแม่เหล็กไฟฟ้า

  • ตัวสับเปลี่ยน

บทความหลัก: Commutator (electric)

รูปแสดงการทำงานของตัวสับเปลี่ยนอย่างง่าย
รูปแสดงการทำงานของตัวสับเปลี่ยน

ตัวสับเปลี่ยนเป็นกลไกที่ใช้ในการสลับอินพุทของมอเตอร์ AC และ DC เพื่อให้กระแสที่ไหลในขดลวดในโรเตอร์ไหลทางเดียวตลอดเวลาในระหว่างการหมุน ประกอบด้วยวงแหวนลื่น(อังกฤษ: slip ring)ชิ้นเล็กๆแยกจากกันด้วยฉนวน วงแหวนนี้ยังแยกจากเพลาของมอเตอร์ด้วยฉนวนอีกด้วย วงแหวนแต่ละคู่ที่อยู่ตรงข้ามกันจะเป็นขดลวดหนึ่งชุด กระแสที่จ่ายให้มัดข้าวต้ม หรือที่เรียกว่า armature ของมอเตอร์จะถูกส่งผ่านแปรงถ่าน(อังกฤษ: brush)สองตัวที่แตะอยู่กับตัวสับเปลี่ยนแต่ละด้านที่กำลังหมุนอยู่ ซึ่งจะทำให้กระแสจากแหล่งจ่ายไฟ AC ที่ไหลกลับทาง ไหลในขดลวดทิศทางเดียวในขณะที่โรเตอร์หมุนจากขั้วหนึ่งไปอีกขั้วหนึ่ง ในกรณีที่ไม่มีกระแสแหล่งจ่ายไม่กลับทางมอเตอร์จะ เบรกหยุดอยู่กับที่ ในแง่ของความก้าวหน้าที่สำคัญในช่วงไม่กี่ทศวรรษที่ผ่านมา อันเนื่องมาจากเทคโนโลยีที่ดีขึ้นในการควบคุมอิเล็กทรอนิกส์ มอเตอร์เหนี่ยวนำที่ควบคุมโดยไม่ใช้เซ็นเซอร์ และมอเตอร์ที่มีสนามแม่เหล็กถาวร มอเตอร์ที่มีตัวสับเปลี่ยนแบบกลไกไฟฟ้า กำลังถูกแทนที่เพิ่มขึ้นด้วยมอเตอร์เหนี่ยวนำที่ใช้ตัวสับเปลี่ยนภายนอกและมอเตอร์แบบแม่เหล็กถาวร

ตัวอย่างแปรงถ่านแบบหนึ่ง

แหล่งจ่ายไฟและการควบคุมมอเตอร์[แก้]

แหล่งจ่ายไฟมอเตอร์[แก้]

แหล่งจ่ายไฟของมอเตอร์ DC มักจะผ่านทางตัวสับเปลี่ยนตามที่อธิบายไว้ข้างต้น ต้วสับเปลี่ยนของมอเตอร์ AC อาจเป็นได้ทั้งแบบแหวนสลิป หรือแบบภายนอกอย่างใดอย่างหนึ่ง การควบคุมอาจเป็นแบบความเร็วคงที่ หรือแบบความเร็วเปลี่ยนแปลงได้ และอาจเป็นแบบ synchronous หรือแบบ asynchronous ก็ได้ มอเตอร์แบบยูนิเวอร์แซลสามารถทำงานทั้ง AC หรือ DC อย่างใดอย่างหนึ่ง

การควบคุมมอเตอร์[แก้]

มอเตอร์ AC แบบความเร็วคงที่จะถูกควบคุมความเร็วด้วยตัวสตาร์ทแบบ direct-on-line หรือ soft-start

มอเตอร์ AC แบบความเร็วแปรได้จะใช้ตัวปรับความเร็วที่เป็นพาวเวอร์อินเวอร์เตอร์ หรือตัวปรับแบบใช้ความถี่หรือใช้เทคโนโลยีตัวสับเปลี่ยนอิเล็กทรอนิกส์หลายแบบแตกต่างกัน

คำว่าตัวสับเปลี่ยนอิเล็กทรอนิกส์มักจะเกี่ยวข้องกับการใช้งานของตัวสับเปลี่ยนที่ไม่ใช้แปรงถ่านในมอเตอร์ไฟฟ้ากระแสตรง และใน en:switched reluctance motor (มอเตอร์ที่ขดลวดอยู่บนสเตเตอร์)

ประเภท[แก้]

มอเตอร์ไฟฟ้าทำงานบนหลักการทางกายภาพที่แตกต่างกันสามประการคือ แม่เหล็ก, ไฟฟ้าสถิต และ piezoelectric (ไฟฟ้าที่เกิดจากการกดดันทางกลไกที่มีต่อผลึกที่ไม่นำไฟฟ้า) โดยที่พบมากที่สุดคือ แม่เหล็ก

ในมอเตอร์แม่เหล็ก สนามแม่เหล็กเกิดขึ้นทั้งในโรเตอร์และสเตเตอร์ สิ่งที่เกิดขึ้นระหว่างสองสนามนี้คือแรงบิดที่เพลาของมอเตอร์ สนามแม่เหล็กอันใดอันหนึ่งหรือทั้งสองสนามจะต้องถูกทำให้เปลี่ยนแปลงไปกับการหมุนของโรเตอร์ ซึ่งจะทำได้โดยการสลับขั้วเปิดและปิดในเวลาที่ถูกต้องหรือการเปลี่ยนแปลงความเข้มของขั้วแม่เหล็ก

ประเภทหลักของมอเตอร์ แบ่งเป็น มอเตอร์กระแสตรง และ มอเตอร์กระแสสลับ มอเตอร์กระแสตรงกำลังจะถูกแทนที่ด้วยมอเตอร์กระแสสลับ

มอเตอร์ไฟฟ้ากระแสสลับมีทั้งแบบ asynchronous และ synchronous.

เมื่อเริ่มทำงาน ซิงโครนัสมอเตอร์ต้องหมุนไปพร้อมกับการเคลื่อนที่ของสนามแม่เหล็กในทุกสภาวะของแรงบิดปกติ

ในซิงโครนัสมอเตอร์ สนามแม่เหล็กจะต้องเกิดขึ้นโดยวิธีอื่นนอกเหนือจากการเหนี่ยวนำ เช่นจากขดลวดที่แยกต่างหากหรือจากแม่เหล็กถาวร

มันเป็นเรื่องปกติที่จะแยกแยะความแตกต่างของความสามารถของพลังงานที่ออกมาของมอเตอร์กับเกณฑ์แรงม้าที่มีค่าเป็นหนึ่ง เพื่อที่ว่าแรงม้าเลขจำนวนเต็มหมายถึงมอเตอร์มีแรงม้าเท่ากับ หรือสูงกว่าเกณฑ์ และ แรงม้าที่เป็นเศษส่วน (อังกฤษ: fractional horsepower) หรือ FHP หมายถึง มอเตอร์มีแรงม้าต่ำกว่าเกณฑ์

มอเตอร์ DC แบบใช้แปรงถ่าน[แก้]

บทความหลัก: DC motor

โดยนิยาม มอเตอร์แบบสับเปลี่ยนด้วยตนเองทั้งหมดทำงานด้วยไฟ DC ซึ่งต้องใช้แปรงถ่าน มอเตอร์ DC ส่วนใหญ่เป็นประเภทแม่เหล็กถาวรขนาดเล็ก

มอเตอร์ DC แบบกระตุ้นด้วยไฟฟ้า[แก้]

บทความหลัก: Brushed DC electric motor

การทำงานของมอเตอร์ไฟฟ้าที่ใช้แปรงกับโรเตอร์สองขั้วและสเตเตอร์ที่เป็นแม่เหล็กถาวร (ขั้ว "N" หรือขั้ว "S" ที่บ่งไว้บนผิวหน้าด้านในของแม่เหล็ก; ผิวหน้าด้านนอกเป็นขั้วตรงข้าม)

มอเตอร์ DC ที่มีตัวสับเปลี่ยนจะมีหนึ่งชุดของขดลวดที่พันรอบอเมเจอร์ที่ขี่อยู่บนเพลาโรเตอร์ เพลายังแบกตัวสับเปลี่ยนอยู่ด้วย ตัวสับเปลี่ยนจะทำตัวเป็นสวิตช์ไฟแบบหมุนที่ใช้งานได้นานปีในการเปลี่ยนทิศทางการไหลของกระแสตามช่วงเวลาที่ไหลในขดลวดของโรเตอร์ในขณะที่เพลาหมุน ดังนั้น ทุกๆมอเตอร์ DC ที่ใช้แปรงจะมีกระแส AC ไหลผ่านขดลวดที่กำลังหมุน กระแสจะไหลผ่านหนึ่งหรือมากกว่าหนึ่งคู่ของแปรงที่แตะอยู่กับตัวสับเปลี่ยน; แปรงเชื่อมต่อแหล่งจ่ายไฟภายนอกกับอเมเจอร์ที่กำลังหมุน

อเมเจอร์ที่กำลังหมุนประกอบด้วยหนึ่งหรือมากกว่าหนึ่งคอยล์ของขดลวดที่พันรอบแกนเหล็กอ่อนเคลือบฉนวน กระแสจากแปรงไหลผ่านตัวสับเปลี่ยนและขดลวดหนึ่งขดของอเมเจอร์ทำให้อเมเจอร์เป็นแม่เหล็กชั่วคราว (แม่เหล็กที่เกิดจากไฟฟ้า) สนามแม่เหล็กที่ผลิตโดยอเมเจอร์จะทำปฏิสัมพันธ์กับสนามแม่เหล็กอยู่กับที่ ที่ผลิตโดยแม่เหล็กถาวรหรือจากขดลวดสร้างสนามอื่นๆอย่างใดอย่างหนึ่ง แรงระหว่างสองสนามแม่เหล็กมีแนวโน้มที่จะหมุนเพลาของมอเตอร์ ตัวสับเปลี่ยนจะสลับกระแสไฟที่ให้กับคอยล์ในขณะที่โรเตอร์หมุน เป็นการรักษาขั้วแม่เหล็กของโรเตอร์ให้อยู่ในแนวที่สอดคล้องกับขั้วแม่เหล็กของสเตเตอร์ เพื่อให้โรเตอร์ไม่เคยหยุดนิ่ง (เช่นเข็มทิศที่ไม่หมุนไปทางอื่น) แต่ช่วยให้หมุนตราบเท่าที่พลังงานถูกจ่ายให้

มอเตอร์ DC แบบใช้ตัวสับเปลี่ยนแบบคลาสสิกมีหลายข้อจำกัด เนื่องมาจากความจำเป็นสำหรับแปรงที่ต้องกดกับตัวสับเปลี่ยน แรงกดนี้จะสร้างแรงเสียดทานและจะเกิดประกายไฟในขณะที่แปรงต่อวงจรและตัดวงจรกับคอยล์ของโรเตอร์ตอนที่แปรงเลื่อนผ่านรอยต่อที่เป็นฉนวนระหว่างเซ็กชั่นหนึ่งไปอีกเซ็กชั่นหนึ่ง หรือแปรงอาจไปช๊อตเซ็กชั่นที่อยู่ติดกัน นอกจากนี้ การเหนี่ยวนำของขดลวดโรเตอร์ทำให้เกิดแรงดันตกคร่อมในแต่ละขดเพิ่มขึ้นเมื่อวงจรของมันจะเปิดออก ซึ่งไปเพิ่มประกายไฟของแปรง ประกายไฟนี้จะจำกัดความเร็วสูงสุดของมอเตอร์ เนื่องจากประกายไฟที่เร็วมากเกินไปจะร้อนมากเกินไป, จะกัดกร่อน หรือแม้กระทั่งละลายตัวสับเปลี่ยน ความหนาแน่นของกระแสต่อหน่วยพื้นที่ของแปรง รวมทั้งค่าตวามต้านทานจะจำกัดเอาต์พุตของมอเตอร์ การต่อและการจากของหน้าสัมผ้สยังสร้างคลื่นรบกวน; ประกายไฟย้งสร้าง Radio Frequency Interference (RFI) ในที่สุด แปรงจะเสื่อมสภาพ และต้องเปลี่ยนและตัวสับเปลี่ยนเองก็เสื่อมสภาพได้และต้องการการบำรุงรักษา (สำหรับมอเตอร์ขนาดใหญ่) หรือเปลี่ยน (สำหรับมอเตอร์ขนาดเล็ก) ชุดใหญ่ของตัวสับเปลี่ยนของมอเตอร์ขนาดใหญ่เป็นชิ้นส่วนที่มีราคาแพงและต้องใช้ความแม่นยำในการประกอบหลายชิ้นส่วนเข้าด้วยกัน สำหรับมอเตอร์ขนาดเล็ก ปกติแล้วตัวสับเปลี่ยนจะประกอบมาเป็นส่วนหนึ่งของโรเตอร์ ดังนั้นถ้าต้องเปลี่ยนตัวสับเปลี่ยน ต้องเปลี่ยนโรเตอร์ทั้งตัว

ในขณะที่ตัวสับเปลี่ยนส่วนใหญ่เป็นรูปทรงกระบอก บางตัวยังเป็นจานแบน ประกอบด้วยหลายเซ็กเมนท์ (โดยทั่วไปอย่างน้อยสาม) ติดตั้งอยู่บนฉนวน

แปรงขนาดใหญ่ต้องการพื้นที่สัมผัสขนาดใหญ่ เพื่อเพิ่มกำลังของมอเตอร์อย่างเต็มที่ แต่แปรง ขนาดเล็กต้องการหน้าสัมผัสเล็กเพื่อเพิ่มความเร็วของมอเตอร์ให้เต็มที่โดยที่แปรงไม่กระดอนและเกิดประกายไฟมากเกินไป (แปรงขนาดเล็กยังราคาถุกกว่า) สปริงของแปรงที่แข็งหน่อยยังสามารถใช้เพื่อให้แปรงทำงานหนักที่ความเร็วสูงขึ้นแต่ด้วยค่าใช้จ่ายที่เป็นการสูญเสียจากแรงเสียดทานสูงขึ้น (ประสิทธิภาพต่ำลง) และเร่งให้แปรงและตัวสับเปลี่ยนสึกหรอเร็วขึ้น เพราะฉะนั้น การออกแบบแปรงของมอเตอร์ DC ต้องแลกเปลี่ยนระหว่างกำลังงาน ความเร็ว ประสิทธิภาพ และการสึกหรอ

A: shunt B: series C: compound f = field coil

มอเตอร์ DC แบบใช้แปรงมีห้าประเภทดังต่อไปนี้:

  1. แบบขดลวดพันขนาน
  2. แบบพันอนุกรม
  3. แบบผสม มีสองแบบได้แก่:
    1. ผสมสะสม
    2. ผสมที่แตกต่างกัน
  4. แบบแม่เหล็กถาวร (ไม่มีรูปแสดง )
  5. Separately excited (ไม่มีรูปแสดง)

มอเตอร์ DC แบบแม่เหล็กถาวร[แก้]

บทความหลัก: Permanent-magnet electric motor

มอเตอร์แม่เหล็กถาวรไม่ได้มีสนามแม่เหล็กจากขดลวดบนสเตเตอร์ แต่อาศัยสนามจากแม่เหล็กถาวรแทนในการปฏิสัมพันธ์กับสนามแม่เหล็กของโรเตอร์เพื่อสร้างแรงบิด ขดลวดชดเชยทึ่ต่ออนุกรมกับอเมเจอร์อาจถูกนำมาใช้ในมอเตอร์ขนาดใหญ่เพื่อปรับปรุงการสับเปลี่ยนภายใต้โหลด เนื่องจากสนามนี้มีค่าคงที่ จึงใช้ปรับความเร็วไม่ได้ สนามแม่เหล็กถาวร (สเตเตอร์) มีความสะดวกในมอเตอร์ขนาดจิ๋ว ที่จะกำจัดการบริโภคพลังงานของขดลวด มอเตอร์ DC ขนาดใหญ่ส่วนมากเป็นแบบ"ไดนาโม" ที่มีขดลวดในสเตเตอร์ ในอดีต แม่เหล็กถาวรไม่สามารถรักษา flux ที่สูงไว้ได้ถ้าถูกถอดออกเป็นชิ้นๆ; ขดลวดจึงจำเป็นเพื่อให้ได้ปริมาณของ flux ตามต้องการ อย่างไรก็ตาม แม่เหล็กถาวรขนาดใหญ่จะมีราคาแพง ทั้งอันตรายและยากที่จะประกอบ; ขดลวดจึงเป็นที่นิยมสำหรับมอเตอร์ขนาดใหญ่

เพื่อลดน้ำหนักและขนาด มอเตอร์แม่เหล็กถาวรขนาดจิ๋วอาจใช้แม่เหล็กพลังงานสูงที่ทำด้วย สารนีโอดิเมียม หรือสารเชิงกลยุทธ์อื่นๆ เช่น ส่วนใหญ่เป็นโลหะผสม นีโอดิเมียม-เหล็ก-โบรอน ด้วยความหนาแน่นที่สูงกว่าของฟลักซ์ของสารเหล่านี้ มอเตอร์ไฟฟ้าที่ใช้แม่เหล็กถาวร พลังงานสูงมีความสามารถในการแข่งขันน้อยกว่ามอเตอร์ไฟฟ้าแบบซิงโครนัสที่ถูกออกแบบอย่างดีสุดแบบ single feed และมอเตอร์แบบเหนี่ยวนำ มอเตอร์ขนาดจิ๋วมีโครงสร้างคล้ายกับ โครงสร้างที่แสดงในภาพประกอบ ยกเว้นว่าพวกมันมีอย่างน้อยสามขั้วโรเตอร์ (เพื่อให้แน่ใจในการสตาร์ทโดยไม่คำนึงถึงตำแหน่งของโรเตอร์) และตัวเครื่องด้านนอกจะเป็นท่อเหล็กที่เชื่อมโยงทางแม่เหล็กกับภายนอกของแม่เหล็กสนามรูปโค้ง

มอเตอร์ที่ใช้ตัวสับเปลี่ยนแบบอิเล็กทรอนิกส์[แก้]

มอเตอร์ DC แบบไม่ใช้แปรง[แก้]

บทความหลัก: Brushless DC electric motor (BLDC)

บางส่วนของปัญหาของมอเตอร์ DC ที่ใช้แปรงจะถูกตัดทิ้งไปในมอเตอร์แบบ BLDC ซึ่งแทนที่ "สวิทช์หมุน"หรือตัวสับเปลี่ยนแบบกลไก ไปเป็นแบบสวิทช์อิเล็กทรอนิกส์ภายนอก ที่จะ synchronise กับตำแหน่งของโรเตอร์ มอเตอร์แบบ BLDC มักจะมีประสิทธิภาพประมาณ 85-90% และสูงได้ถึง 96.5% ในขณะที่ มอเตอร์กระแสตรงที่ใช้ brushgear มักจะมีประสิทธิภาพเพียง 75-80% เท่านั้น

รูปคลื่นสี่เหลี่ยมคางหมูของมอเตอร์แบบ BLDC ซึ่งเป็น back-emf จะได้บางส่วนมาจากขดลวดของสเตเตอร์ และบางส่วนได้จากการจัดตำแหน่งของแม่เหล็กถาวรของโรเตอร์ เซนเซอร์แบบ Hall Effect จะถูกติดตั้งอยู่บนขดลวดของสเตเตอร์เพื่อการตรวจจับตำแหน่งโรเตอร์ เพื่อให้วงจรควบคุมจ่ายกระแสให้ชุดเฟสของขดลวดชุดใดชุดหนึ่งหรือมากกว่าหนึ่งชุดเพื่อให้โรเตอร์หมุนตามความเร็วที่ต้องการ มอเตอร์ DC ที่มีตัวสับเปลี่ยนแบบอิเล็กทรอนิกส์จะเป็นเหมือนมอเตอร์ DC ที่เอาข้างในออกข้างนอก

BLDC มอเตอร์ถูกใช้กันโดยทั่วไปในที่ซึ่งการควบคุมความเร็วอย่างแม่นยำเป็นสิ่งที่จำเป็น อย่างเช่นในดิสก์ไดรฟ์ของเครื่องคอมพิวเตอร์หรือเครื่องบันทึกวิดีโอเทป, ไดรฟ์ภายใน CD, CD - ROM ( ฯลฯ ) และกลไกภายในผลิตภัณฑ์สำนักงาน เช่นพัดลม, เครื่องพิมพ์เลเซอร์ และ เครื่องถ่ายเอกสาร. พวกมันมีข้อดีหลายอย่างมากกว่ามอเตอร์ธรรมดา เช่น:

  • เมื่อเทียบกับพัดลม โดยใช้มอเตอร์ AC ทั่วไป มอเตอร์แบบ BLDC มีขดลวดอยู่บนสเตเตอร์ที่ติดอยู่กับโครงสร้างของมอเตอร์ ทำให้การระบายอากาศทำได้จากภายนอก การทำงานในอากาศที่เย็นจึงทำให้มีประสิทธิภาพมากกว่า ตัวมอเตอร์สามารถทำเป็นโครงสร้างปิด ทำให้ไม่มีฝุ่นละอองผ่านเข้าไปได้ ทำให้สามารถควบคุมการทำงานได้แม่นยำตลอดอายุการใช้งาน
  • เนื่องจากไม่มีตัวสับเปลี่ยนที่สึกหรอได้ อายุการใช้งานของมอเตอร์ BLDC จึงยาวนานกว่ามอเตอร์ที่ใช้แปรงและตัวสับเปลี่ยนอย่างมีนัยสำคัญ ตัวสับเปลี่ยนยังสร้างคลื่นรบกวนและเมื่อไม่มีตัวสับเปลี่ยนและแปรง มอเตอร์ BLDC อาจถูกใช้ในอุปกรณ์ที่ไวต่อสัญญาณไฟฟ้า เช่นเครื่องเสียงและคอมพิวเตอร์
  • เซนเซอร์ Hall Effect ยังสามารถใช้ส่งสัญญาณของเครื่องวัดวามเร็วสำหรับการควบคุมแบบ closed-loop (ควบคุมเซอร์โว) ในพัดลม สัญญาณเครื่องวัดวามเร็วถูกนำมาใช้เป็นสัญญาณ "Fan OK" รวมทั้งให้สัญญาณ feedback ของความเร็วที่มอเตอร์กำลังหมุนอยู่
  • มอเตอร์สามารถ synchronise กับสัญญาณนาฬิกาภายในและภายนอกได้ง่ายมาก เพื่อควบคุมความเร็วได้อย่างแม่นยำ
  • BLDC มอเตอร์ไม่มีโอกาสที่จะเกิดประกายไฟ, ซึ่งแตกต่างจากมอเตอร์ที่ใช้แปรง, ทำให้มัน เหมาะกับสภาพแวดล้อมที่มีสารเคมีระเหย และเชื้อเพลิง นอกจากนี้ ประกายไฟยังสร้างโอโซน ซึ่งสามารถสะสมอยู่ในอาคารที่มีการระบายอากาศไม่ดี ทำให้เสี่ยงต่อการเกิดอันตรายต่อสุขภาพของผู้อยู่อาศัย
  • BLDC มอเตอร์มักจะใช้ในอุปกรณ์ขนาดเล็กเช่น เครื่องคอมพิวเตอร์และโดยทั่วไปจะใช้พัดลมในการกำจัดความร้อนที่ไม่พึงประสงค์
  • มันเสียงเงียบมาก ซึ่งเป็นข้อได้เปรียบถ้าถูกนำไปใช้ในอุปกรณ์ที่จะมีผลกระทบถ้ามีการสั่นสะเทือน
  • BLDC มอเตอร์ที่ทันสมัยจะมีขนาดกำลังตั้งแต่เศษเสี้ยวของวัตต์จนถึงหลายกิโลวัตต์ มอเตอร์ BLDC ขนาดใหญ่ที่มีกำลังสูงถึงประมาณ 100 กิโลวัตต์ ถูกใช้ในรถไฟฟ้า พวกมันยังมีประโยชน์อย่างมีนัยสำคัญเครื่องบินไฟฟ้าประสิทธิภาพสูง

มอเตอร์แรงต้านแม่เหล็ก[แก้]

บทความหลัก: Switched reluctance motor

มอเตอร์แรงต้านแม่เหล็กแบบ 6/4 (6 stator 4 rotor)

SRM ไม่มีแปรงหรือแม่เหล็กถาวรและโรเตอร์ก็ไม่มีกระแสไฟฟ้า แต่แรงบิดเกิดจากแนวไม่ตรงกันเล็กน้อยของขั้วแม่เหล็กบนโรเตอร์ กับขั้วแม่เหล็กบนสเตเตอร์ โรเตอร์จะวางตัวเองให้อยู่ในแนวสนามแม่เหล็กของสเตเตอร์ ในขณะที่สเตเตอร์ถูก energize โดยกระแสในขดลวด

flux แม่เหล็กที่สร้างขึ้นโดยขดลวดจะไปตามเส้นทางของแรงต้านแม่เหล็ก(อังกฤษ: magnetic reluctance)ที่มีค่าน้อยที่สุด(เหมือนกระแสไฟฟ้าที่ไหลในทิศทางที่มีความต้านทานน้อยที่สุด) นั่นคือ flux จะไหลผ่านขั้วของโรเตอร์ที่อยู่ใกล้กับขั้วของสเตเตอร์ที่ถูก energize มากที่สุด ขั้วของโรเตอร์นั้นจะกลายเป็นแม่เหล็ก และสร้างแรงบิดขึ้น ในขณะที่โรเตอร์หมุน ขดลวดชุดต่อไปก็จะถูก energize ไปเรื่อยๆ ทำให้โรเตอร์ยังคงหมุนอยู่ตลอด

SRMs ในปัจจุบันยังคงถูกใช้ในเครื่องไฟฟ้าบางอย่าง

มอเตอร์ AC-DC สากล[แก้]

บทความหลัก: Universal motor

มอเตอร์สากลต้นทุนต่ำที่ทันสมัยจากเครื่องดูดฝุ่น ขดลวดสนามบนสเตเตอร์มีสีทองแดงเข้มทั้งสองด้าน, แกนเคลือบของโรเตอร์เป็นโลหะสีเทา กับสล็อตสีเข้ม สำหรับพันขดลวด ตัวสับเปลี่ยนอยู่ด้านหน้า (ซ่อนบางส่วน)ได้กลายเป็นสีเข้มเนื่องจากการใช้งาน ชิ้นส่วนขึ้นรูปพลาสติกขนาดใหญ่สีน้ำตาลที่อยู่ด้านหน้าใช้รองรับแนวแปรงและแปรง (ทั้งสองด้าน) และแบริ่ง

มอเตอร์สากลเป็นมอเตอร์ชนิดหนึ่งที่ทำงานได้ทั้ง AC และ DC เพาเวอร์ มันเป็นมอเตอร์แบบใช้ตัวสับเปลี่ยนและมีคอยล์สนามของสเตเตอร์ต่อแบบอนุกรมกับคอยล์ของโรเตอร์ผ่านทางตัวสับเปลี่ยน มอเตอร์สากลสามารถทำงานได้ดีบน AC เพราะ กระแสทั้งในสเตเตอร์และในโรเตอร์ (ซึ่งทำให้เกิดสนามแม่เหล็ก) จะสลับกัน(กลับขั้ว)ทำ synchronize กับแหล่งจ่ายไฟ ทำให้ได้แรงกลเกิดขึ้นในทิศทางของการหมุนอย่างต่อเนื่อง เป็นอิสระต่อทิศทางของแหล่งจ่าย แต่เป็นไปตามตัวสับเปลี่ยนและขั้วของคอยล์สนาม มอเตอร์สากลมีแรงบิดเริ่มต้นสูง หมุนที่ความเร็วสูงและมีน้ำหนักเบา จึงมักถุกนำมาใช้ในอุปกรณ์ที่เคลื่อนย้ายไปมาได้และใช้ภายในครัวเรือน มันยังง่ายในการควบคุมด้วยอิเล็กทรอนิกส์ ถึงอย่างไรก็ตาม ตัวสับเปลี่ยนมีแปรงที่สึกหรอได้ ดังนั้นมันจึงไม่เหมาะที่จะใช้ในงานที่ต้องทำงานแบบต่อเนื่องนานๆ นอกจากนั้นตัวสับเปลี่ยนยังทำให้เกิดเสียงรบกวนด้วย

ในการทำงานที่ความถี่สายไฟปกติ มอเตอร์สากลมักจะมีขนาดกำลังน้อยกว่า 1000 วัตต์ มอเตอร์สากลหลายตัวยังรวมตัวกันเป็นพื้นฐานสำคัญของมอเตอร์ฉุดลากแบบดั้งเดิม ใน การเดินรถไฟที่ใช้ไฟฟ้า ในการใช้งานแบบนี้ การใช้ AC เพื่อจ่ายกำลังให้มอเตอร์ไฟฟ้าที่แต่เดิมถูกออกแบบมาให้ทำงานบน DC จะนำไปสู่​​การสูญเสียประสิทธิภาพเนื่องจาก eddy current ไปทำให้ชิ้นส่วนที่เป็นแม่เหล็กร้อน โดยเฉพาะอย่างยิ่งชิ้นส่วนขั้วสนามของมอเตอร์ เพราะว่า, สำหรับ DC, อาจมีการใช้เหล็กแข็ง (ไม่เคลือบ) และปัจจุบันไม่ค่อยได้ใช้แล้ว

ความได้เปรียบของมอเตอร์สากลคือ แหล่งจ่ายไฟ AC อาจจะนำมาใช้กับมอเตอร์ ที่มีลักษณะ สมบัติบางอย่างที่เหมือนกับในมอเตอร์ DC โดยเฉพาะอย่างยิ่ง แรงบิดช่วงเริ่มต้นที่สูง และการออกแบบที่กะทัดรัดมากถ้าทำงานด้วยความเร็วสูง ด้านลบคือปัญหาการบำรุงรักษาและอายุอันแสนสั้นของตัวสับเปลี่ยน มอเตอร์ดังกล่าวจะใช้ในอุปกรณ์เช่น เครื่องผสมอาหารและ เครื่องมือไฟฟ้า ซึ่งจะใช้เป็นระยะๆเท่านั้น และมักจะมีความต้องการแรงบิดเริ่มต้นสูง บนขดลวดสนามอาจมี tap ได้หลายจุดเพื่อปรับความเร็วเป็นขั้นบันได เครื่องปั่นน้ำผลไม้ในครัวเรือน ที่โฆษณาว่ามีหลายความเร็ว มีบ่อยๆที่มีขดลวดสนามที่มีหลาย tap และไดโอด เพื่อให้แทรกอนุกรมเพื่อเรียงกระแสแบบครึ่งคลื่นจ่ายให้กับมอเตอร์ มอเตอร์สากลยังถูกใช้เป็นตัวควบคุมความเร็วอิเล็กทรอนิกส์เพื่อเป็นทางเลือกที่เหมาะอย่างยิ่งสำหรับอุปกรณ์เช่นเครื่องซักผ้าตามบ้าน มอเตอร์สามารถหมุนถังซัก(ทั้งเดินหน้าและถอยหลัง)โดยการเปลี่ยนขดลวดสนามเมื่อเทียบกับอเมเจอร์

ในขณะที่ มอเตอร์เหนี่ยวนำแบบกรงกระรอก (SCIM) จะไม่สามารถหมุนเพลาเร็วกว่าความถี่ สายไฟฟ้า, มอเตอร์สากลสามารถวิ่งด้วยความเร็วที่สูงกว่ามาก สิ่งนี้จะทำให้มีประโยชน์สำหรับเครื่องใช้ในครัวเรือน เช่นปั่นน้ำผลไม้ เครื่องดูดฝุ่น และเครื่องเป่าผม ที่ต้องการความเร็วสูงและ น้ำหนักเบา นอกจากนั้นยังมีใช้กันทั่วไปใน เครื่องมือไฟฟ้าแบบพกพาเช่น สว่าน, เครื่องขัด, เลื่อยกลมและเลื่อยจิ๊กซอ ซึ่งลักษณะสมบัติของมอเตอร์แบบนี้จะทำงานได้ดี เครื่องดูดฝุ่นและมอเตอร์ ตัดวัชพืชจำนวนมากใช้ความเร็วเกิน 10,000 รอบต่อนาที ขณะที่หลายเครื่องบดขนาดเล็กที่คล้ายกันใช้ความเร็วเกิน 30,000 รอบต่อนาที

มอเตอร์ AC ตัวสับเปลี่ยนภายนอก[แก้]

บทความหลัก: AC motor

มอเตอร์เหนี่ยวนำ AC และแบบซิงโครนัสถูกออกแบบให้ได้ประโยชน์สูงสุด สำหรับการใช้งาน กับรูปคลื่นแบบซายน์หรือคล้ายแบบซายน์เฟสเดียวหรือหลายเฟส เช่น สำหรับการใช้งานความเร็วจาก AC power grid หรือ ความเร็วปรับได้จากตัวควบคุม VFD (Variable-frequency drive) มอเตอร์ AC มีสองส่วนคือสเตเตอร์อยู่กับที่มีขดลวดรับไฟ AC เพื่อผลิตสนามแม่เหล็ก ที่หมุน และ โรเตอร์ที่ติดอยู่กับเพลาเอาต์พุตที่ให้แรงบิดโดยสนามที่หมุน

มอเตอร์เหนี่ยวนำ[แก้]

บทความหลัก: Induction motor

มอเตอร์เหนี่ยวนำแบบกรงกระรอก(SCIM)และแบบพันรอบโรเตอร์(WRIM)[แก้]

โรเตอร์กรงกระรอกที่แสดงลามิเนตเพียงสามชั้น

มอเตอร์เหนี่ยวนำเป็นมอเตอร์ AC แบบอะซิงโครนัส ที่พลังงานจะถูกโอนไปยังโรเตอร์โดยการเหนี่ยวนำแม่เหล็กไฟฟ้า เหมือนการกระทำของหม้อแปลงไฟฟ้า มอเตอร์เหนี่ยวนำมีลักษณะคล้ายกับหม้อแปลงที่กำลังหมุน โดยที่สเตเตอร์เป็นขดปฐมภูมิและ โรเตอร์เป็นขดทุติยภูมิ มอเตอร์เหนี่ยวนำหลายเฟสถูกนำมาใช้กันอย่างแพร่หลายในอุตสาหกรรม

มอเตอร์เหนี่ยวนำอาจจะแบ่งออกต่อไปอีกเป็น SCIM และ WRIM. มอเตอร์เหนี่ยวนำแบบกรงกระรอกมีขดลวดที่หนักทำขึ้นจากแท่งโลหะตัน ปกติเป็นอะลูมิเนียมหรือทองแดง เชื่อมกันด้วยแหวนที่ปลายของโรเตอร์ทั้งสองปลาย เมื่อพิจารณาแล้วแท่งและแหวน มีลักษณะเหมือนกรงสำหรับออกกำลังกายของสัตว์ที่หมุนได้ จึงได้ชื่ออย่างนั้น

กระแสที่เหนี่ยวนำในขดลวดทำให้เกิดสนามแม่เหล็กที่โรเตอร์ รูปร่างของแท่งโลหะของโรเตอร์จะเป็นตัวกำหนดลักษณะสมบัติของความเร็ว-แรงบิด ที่ความเร็วต่ำ กระแสที่เหนี่ยวนำในกรง กระรอกเกือบจะอยู่ที่ความถี่ของ line และมีแนวโน้มที่จะอยู่ในส่วนด้านนอกของกรงโรเตอร์ ในขณะที่มอเตอร์เร่งความเร็ว ความถี่สลิปจะลดลงและกระแสจะมากขึ้นในด้านในของขดลวด โดย การตกแต่งรูปร่างของแท่งโลหะเพื่อเปลี่ยนความต้านทานของขดลวดที่อยูด้านในและด้านนอกของกรง เหมือนกับได้ใส่ความต้านทานปรับค่าได้เข้าไปในวงจรของโรเตอร์ได้อย่างมีประสิทธิภาพ อย่างไรก็ตาม ส่วนใหญ่ของมอเตอร์ดังกล่าวมีแท่งโลหะที่มีรูปร่างเพียงแบบเดียว

ไดอะแกรมแสดง wound-rotor induction motor

ใน WRIM, ขดลวดโรเตอร์ทำจากลวดหุ้มฉนวนหลายๆรอบต่ออยู่กับ slip ring บนเพลาของ มอเตอร์ slip ring นี้จะต่อระหว่างขดลวดของโรเตอร์กับตัวต้านทานภายนอกหรืออุปกรณ์ควบคุมอื่นๆ ตัวต้านทานช่วยควบคุมความเร็วของมอเตอร์ แม้ว่าจะเกิดพลังงานความร้อนจำนวนมากกระจายในความต้านทานภายนอก ตัวแปลงสักตัวสามารถต่อกับวงจรโรเตอร์และจ่ายพลังงานที่ความถี่ของสลิปกลับมา, แทนที่จะถูกทิ้งไปเปล่าๆ, เข้าระบบส่งกำลังผ่านทางอินเวอร์เตอร์อีกตัวหนึ่ง หรือเข้าที่มอเตอร์-เจเนอเรเตอร์ต่างหาก

WRIM ใช้เป็นหลักในการสตาร์ทโหลดความเฉื่อยสูง หรือโหลดที่ต้องการแรงบิดเริ่มต้นที่สูงมากๆตลอดช่วงความเร็วเต็มสุด โดยการเลือกตัวต้านทานอย่างถูกต้องเพื่อใช้ในการต้านทานรองหรือตัวสตาร์ทแหวนสลิป มอเตอร์จะสามารถผลิตแรงบิดสูงสุดที่แหล่งจ่ายกระแสค่อนข้างต่ำ จากความเร็วเป็นศูนย์จนกระทั่งความเร็วเต็มสุดได้ มอเตอร์ประเภทนี้ยังให้ความเร็วที่สามารถควบคุมได้

ความเร็วมอเตอร์สามารถเปลี่ยนแปลงได้เพราะว่าเส้นโค้งแรงบิดของมอเตอร์มีการแก้ไขได้อย่างมีประสิทธิภาพตามขนาดของความต้านทานที่เชื่อมต่อกับวงจรโรเตอร์ การเพิ่มค่าความต้านทานจะลดความเร็วของแรงบิดสูงสุดลง ถ้าความต้านทานเพิ่มเกินกว่าจุดที่แรงบิดสูงสุด เกิดขึ้นที่ความเร็วเป็นศูนย์, แรงบิดจะลดลงอีกต่อไป

เมื่อใช้กับโหลดที่มีเส้นโค้งแรงบิดที่เพิ่มขึ้นตามความเร็ว มอเตอร์จะทำงานด้วยความเร็วที่แรงบิดที่เกิดจากมอเตอร์จะเท่ากับแรงบิดโหลด การลดโลดจะทำให้มอเตอร์เพิ่มความเร็ว และการเพิ่มโหลด จะทำให้มอเตอร์หมุนช้าลงจนโหลดและแรงบิดของมอเตอร์มีค่าเท่ากัน การทำงานในลักษณะนี้ ความสูฃเสียหรือความร้อนในสลิปจะกระจายในตัวต้านทานรองและอาจมีความสำคัญมาก การควบคุมความเร็วและประสิทธิภาพสุทธิยังแย่มากอีกด้ว

มอเตอร์แรงบิด[แก้]

บทความหลัก: Torque moto

มอเตอร์แรงบิดเป็นรูปแบบเฉพาะของมอเตอร์ไฟฟ้าที่สามารถทำงานได้อย่างไม่มีกำหนด ขณะที่ต้องหยุดกลางคัน กล่าวคือเมื่อโรเตอร์ถูกบล็อกไม่ให้ลหมุนโดยไม่ก่อให้เกิดความเสียหาย ในโหมดของการทำงานแบบนี้ มอเตอร์จะจ่ายแรงบิดอย่างต่อเนื่องให้กับโหลด (จึงได้ชื่อนี้)

การประยุกต์ใช้ธรรมดาของมอเตอร์แรงบิดจะเป็นมอเตอร์ตัวจ่ายและมอเตอร์ตัวเก็บของม้วนเทปของเทปไดรฟ์ ในการใช้งานแบบนี้, จะถูกขับด้วยแรงดันไฟฟ้าต่ำ, ลักษณะสมบัติของ มอเตอร์เหล่านี้ช่วยให้เกิดแรงดึงเบาๆและค่อนข้างคงที่บนเนื้อเทปไม่ว่าตัว capstan (step motor ชนิดหนึ่ง) จะป้อนเทปผ่านหัวอ่านหรือไม่ เมื่อใช้กับแรงดันไฟฟ้าที่สูงขึ้น (และให้แรงบิดสูงขึ้นด้วย) มอเตอร์แรงบิดยังสามารถทำงานเดินหน้าและถอยหลังได้อย่างรวดเร็ว โดยไม่ต้องมีกลไกใดๆ เช่นเกียร์หรือคลัทช์เพิ่ม ในโลกของเกมคอมพิวเตอร์ มอเตอร์แรงบิดถูกใช้ในการบังคับพวงมาลัย

การประยุกต์ใช้ธรรมดาอีกประการหนึ่งคือ การควบคุมลิ้นปีกผีเสื้อของเครื่องยนต์สันดาปภายในร่วมกับตัวควบคุมอิเล็กทรอนิกส์ ในการนี้ มอเตอร์ทำงานต้านกับแรงสปริงเพื่อขยับลิ้นปีกผีเสื้อ ให้สอดคล้องกับเอาต์พุตของตัวควบคุม ตัวควบคุมจะตรวจวัดความเร็วรอบเครื่องยนต์ โดยการนับพัลส์ไฟฟ้าจากระบบจุดระเบิดหรือจากคลื่นแม่เหล็กและ, ขึ้นอยู่กับความเร็ว, ทำการปรับเปลี่ยนเล็กน้อยกับจำนวนกระแสเงินที่จ่ายให้กับมอเตอร์ ถ้าเครื่องยนต์เริ่มที่จะชะลอตัวลง เมื่อเทียบกับความเร็วที่ต้องการ กระแสจะถูกเพิ่มให้ มอเตอร์จะจ่ายแรงบิดมากขึ้น ออกแรงดึงต้านกับแรงสปริงที่ดึงกลับเพื่อเปิดลิ้นผีเสื้อนั้น เครื่องยนต์อาจจะทำงานเร็วเกินไป ตัวควบคุมจะลดกระแสลง ทำให้สปริงดึงกลับและปิดลิ้นผีเสื้อ

มอเตอร์ซิงโครนัส[แก้]

บทความหลัก: Synchronous motor

สนามแม่เหล็กหมุนเกิดจากผลรวมของเวกเตอร์ของสนามแม่เหล็กสามเฟสของขดลวดสเตเตอร์

มอเตอร์ไฟฟ้าซิงโครนัสเป็นมอเตอร์ AC ที่โดดเด่นด้วยการหมุนของโรเตอร์ที่มีขดลวดตัดผ่านแม่เหล็ก ในอัตราเดียวกับ AC และส่งผลให้เกิดสนามแม่เหล็กที่ขับมัน พูดได้อีกอย่างหนึ่งว่า ภายใต้สภาวะการทำงานปกติมันมีสลิปเป็นศูนย์ แตกต่างจากมอเตอร์เหนี่ยวนำซึ่งจะต้องมีสลิปจึงจะเกิดแรงบิด อีกแบบหนึ่งของมอเตอร์ซิงโครนัสเป็นเหมือนมอเตอร์เหนี่ยวนำ ยกเว้นโรเตอร์จะถูกกระตุ้นด้วยสนาม DC แหวนสลิปและแปรงถ่านถูกใช้เพื่อนำกระแสไปให้กับโรเตอร์ ขั้วทั้งหลายของโรเตอร์เชื่อมต่อซึ่งกันและกัน และหมุนที่ความเร็วเดียวกัน จึงถูกเรียกว่ามอเตอร์ซิงโครนัส .

มอเตอร์ซิงโครนัสตั้งเวลาพลังงานต่ำ (อย่างเช่นที่ใชัในนาฬิกาไฟฟ้าดั้งเดิม) อาจมีโรเตอร์รูปถ้วยที่มีแม่เหล็กถาวรหลายขั้วอยู่ภายนอกและใช้ขดลวดในเงาเพื่อให้แรงบิดเริ่มต้น มอเตอร์นาฬิกาของ Telechron มีขั้วเงาสำหรับแรงบิดเริ่มต้น และมีโรเตอร์แบบแหวนสองก้านที่ทำงานเหมือนกับโรเตอร์สองขั้วแยก

มอเตอร์แบบ double feed[แก้]

บทความหลัก: Doubly fed electric machine

มอเตอร์แบบ double feed มีขดลวดหลายเฟสอิสระสองชุด ซึ่ง มีส่วนร่วมในการให้กำลังงานใน กระบวนการแปลงพลังงานที่มีอย่างน้อยหนึ่งชุดของขดลวดที่ถูกควบคุมด้วยระบบอิเล็กทรอนิกส์สำหรับการทำงานความเร็วแปรได้ ขดลวดหลายเฟสอิสระสองชุด (เช่นอเมเจอร์คู่) เป็นจำนวนสูงสุดที่ให้ไว้ในแพคเกจเดียวโดยไม่มีทอพอโลยีซ้ำกัน มอเตอร์แบบ double feed เป็นเครื่องที่มีความเร็วในช่วงแรงบิดคงที่เป็นสองเท่าของความเร็วแบบซิงโครนัสที่ความถี่ของการกระตุ้นเดียวกัน และเป็นสองเท่าของแรงบิดคงที่ของมอเตอร์แบบ single feed ที่มีชุดขดลวดแอคทีฟเพียงชุดเดียว

มอเตอร์แบบ double feed สามารถใช้สำหรับ converter อิเล็กทรอนิกส์ขนาดเล็ก แต่ค่าใช้จ่ายของขดลวดโรเตอร์และ slip ring อาจชดเชยการประหยัดในชิ้นส่วนเพาเวอร์อิเล็กทรอนิกส์ ความยุ่งยากหลายอย่างในการควบคุมความเร็วให้ใกล้กับความเร็วซิงโครนัสเป็นตัวจำกัดการนำไปประยุกต์ใช้งาน

มอเตอร์แม่เหล็กพิเศษ[แก้]

โรตาริ[แก้]

มอเตอร์แบบโรเตอร์ไม่ใช้เหล็กหรือไม่มีแกน[แก้]

มอเตอร์ไร้แกนขนาดจิ๋ว หลักการใดๆของมอเตอร์ที่อธิบายข้างต้นไม่ได้กำหนดว่าส่วนที่เป็นเหล็กของโรเตอร์เท่านั้นที่หมุน ถ้าวัสดุแม่เหล็กอ่อนของโรเตอร์จะทำในรูปแบบของทรงกระบอก(ยกเว้น ผลกระทบของ hysteresis) ดังนั้นแรงบิดจะกระทำบนขดลวดของแม่เหล็กไฟฟ้าเท่านั้น การใช้ประโยชน์จาก ความเป็นจริงนี้คือมอเตอร์ DC แบบไร้แกน หรือไร้เหล็ก ซึ่งรูปแบบเฉพาะของมอเตอร์ DC แบบแม่เหล็กถาวร เมื่อทำการเพิ่มประสิทธิภาพให้มีอัตราเร่งที่รวดเร็ว, มอเตอร์เหล่านี้มีโรเตอร์ ที่ถูกสร้างขึ้นโดยไม่มีแกนกลางเป็นเหล็ก โรเตอร์สามารถใช้รูปแบบของทรงกระบอกที่เต็มไปด้วยขดลวดหรือโครงสร้างพยุงตัวเอง ประกอบด้วยเฉพาะขดลวดแม่เหล็กและ

วัสดุที่ใช้มัดรวมกันเท่านั้น โรเตอร์สามารถฟิตพอดีภายในแม่เหล็กสเตเตอร์; กระบอกที่ทำด้วยแม่เหล็กอ่อนติดอยู่กับที่ภายในโรเตอร์จะเป็น return path สำหรับ flux แม่เหล็กของสเตเตอร์ การจัดเรียงแถวที่สองขดลวดโรเตอร์รอบแม่เหล็กของสเตเตอร์ ในการออกแบบแบบนั้น โรเตอร์จะฟิตภายในกระบอกแม่เหล็กอ่อนที่สามารถใช้เป็น housing สำหรับมอเตอร์และ ให้ return path สำหรับ flux อีกด้วย

เนื่องจากโรเตอร์มีน้ำหนัก(มวล)เบากว่ามากเมื่อเทียบกับโรเตอร์ธรรมดาที่เกิดจากขดลวดทองแดงบนเหล็กเคลือบ โรเตอร์สามารถเร่งความเร็วได้อย่างรวดเร็ว มักจะทำได้สำเร็จในช่วงเวลากลคงที่ต่ำกว่าหนึ่ง ms ถ้าใช้ลวดอะลูมิเนียมแทนที่จะเป็นทองแดงที่หนักกว่ามาก แต่ เนื่องจากไม่มีมวลโลหะในโรเตอร์เพื่อทำหน้าที่เป็นที่ระบายความร้อน แม้แต่มอเตอร์ไร้แกนขนาดเล็กมักจะถูกระบายความร้อนด้วยแรงอากาศบังคับ ความร้อนสูงเกินอาจจะมีปัญหา ในการออกแบบสำหรับมอเตอร์ DC ไร้แกน

ท่ามกลางประเภทเหล่านี้คือประเภทโรเตอร์จาน ที่จะอธิบายในรายละเอียดในส่วนถัดไป

มอเตอร์สั่นสำหรับโทรศัพท์มือถือ บางครั้งเป็นประเภทสนามแม่เหล็กถาวรทรงกระบอกขนาดจิ๋ว แต่ก็ยังมี ประเภทรูปทรงจานที่มีแผ่นแม่เหล็กสนามหลายขั้วบางๆ และประเภทโรเตอร์ที่มีโครงสร้างเป็นพลาสติคขึ้นรูปที่ตั้งใจทำให้ไม่สมดุลซึ่งประกอบด้วยคอยล์ไร้แกนสองชุดผูกมัดติดกัน แปรงโลหะและตัวสับเปลี่ยนแบบแบนเปิดปิดพลังงานให้กับคอยล์ของโรเตอร์


มอเตอร์แบบโรเตอร์แพนเค้กหรือแกน axial[แก้]

มอเตอร์แบบแพนเค้กชนิดหนึ่ง

การออกแบบมอเตอร์ที่ค่อนข้างไม่ปกติของมอเตอร์แบบหนึ่งคือมอเตอร์แบบอเมเจอร์บนโรเตอร์เป็นแผ่นวงจรพิมพ์หรือมอเตอร์แพนเค้กที่มีขดลวดเป็นรูปจานเหมือนแผ่น CD ที่หมุนอยู่ระหว่างอาร์เรย์ของแม่เหล็กพลังสูง แม่เหล็กหลายตัวจะจัดเรียงเป็นวงกลมบนสเตเตอร์แบนหันหน้าแม่เหล็กเหล่านั้นไปทางโรเตอร์โดยมีระยะห่างเป็น air gap การออกแบบลักษณะนี้เป็นที่รู้จักกันทั่วไปว่าเป็น มอเตอร์แพนเค้ก เพราะมีลักษณะที่แบนมาก แม้ว่าเทคโนโลยีแบบนี้จะมีชื่อหลายยี่ห้อตั้งแต่เริ่มต้น เช่น ServoDisc

อเมเจอร์แผ่นพิมพ์(เดิมทำบนแผ่นวงจรพิมพ์)ทำจากแผ่นทองแดงเจาะรูหลายแผ่นเคลือบเข้าด้วยกันโดยใช้วัสดุที่ทันสมัยให้อยู่​​ในรูปของแผ่นแข็งบาง มีการผลิตจะออกมาที่ไม่ซ้ำกันใน โลกมอเตอร์ใช้แปรงโดยที่มันจะมีตัวแหวนสับเปลี่ยนอยู่ด้วย แปรงจะสัมผ้สโดยตรงบนพื้นผิว อเมเจอร์ทำให้การออกแบบทั้งชุดมีขนาดเล็กมาก

วิธีการผลิตทางเลือก คือการใช้ลวดทองแดงวางเรียบกับตัวสับเปลี่ยนทั่วไปพันเป็นรูปทรงดอก ไม้และกลีบดอก ขดลวดจะมีความเสถียรโดยทั่วไปโดยการปิดผนึกด้วยอีพ็อกซี่ไฟฟ้า ระบบจะเติมอีพ็อกซี่ที่มีความหนืดผสมปานกลาง และให้เวลาที่เจลนาน

ข้อได้เปรียบที่ไม่ซ้ำแบบใครของมอเตอร์ DC ไร้เหล็กคือไม่มีการ cogging (การเปลี่ยนแปรงของแรงบิดที่เกิดจากการเปลี่ยนแปลงดึงดูดระหว่างเหล็กและแม่เหล็ก) eddy current ที่แฝงอยู่ไม่สามารถรวมตัวกันในโรเตอร์เนื่องจากมันไร้เหล็กโดยสิ้นเชิง แม้แต่โรเตอร์ยังถูกเคลือบ สิ่งนี้สามารถเพิ่มประสิทธิภาพได้อย่างมาก แต่ตัวควบคุมความเร็วต้องใช้อัตราการเปลี่ยนสูงที่สูงขึ้น(>40 kHz) หรือ DC อัน้นื่องมาจากแรงเหนี่ยวนำแม่เหล็กไฟฟ้าลดลง

มอเตอร์เหล่านี้แต่เดิมถูกคิดค้นมาเพื่อขับ capstan ของตัวขับเทปแม่เหล็กในอุตสาหกรรมคอมพิวเตอร์ ที่ต้องใช้เวลาน้อยที่สุดที่จะถึงความเร็วใช้งานและระยะทางในการหยุดให้สั้นที่สุด เป็นสิ่งสำคัญ มอเตอร์แพนเค้กยังคงมีการใช้กันอย่างแพร่หลายในระบบควบคุมเซอร์โวประสิทธิภาพสูง ที่ควบคุมหุ่นยนต์ อุตสาหกรรมอัตโนมัติและอุปกรณ์การแพทย์ เนื่องจากความหลากหลายของการสร้างที่ใช้ได้ในขณะนี้ เทคโนโลยีถูกนำมาใช้ในการใช้งานจากวงการทหารที่มีอุณหภูมิสูง ถึงปั๊มต้นทุนต่ำและเซอร์โวพื้นฐาน

มอเตอร์เซอร์โว[แก้]

บทความหลัก: Servo motor

มอเตอร์เซอร์โวเป็นมอเตอร์ชนิดหนึ่ง, มักจะขายเป็นโมดูลสำเร็จรูป, ที่ถูกใช้ภายในระบบการควบคุมตำแหน่งหรือการควบคุมความเร็ว ส่วนใหญ่จะควบคุมวาล์ว Servomotors ถูกใช้ในงาน เช่นเครื่องมือกล, ปากกาplotters และระบบที่เป็นกระบวนการอื่นๆ มอเตอร์ที่มีไว้สำหรับใช้ใน servomechanism ต้องมีลักษณะสมบัติที่อยู่ในรูปเอกสารสำหรับความเร็ว แรงบิดและการใช้พลังงาน ความเร็วเมื่อเทียบกับแรงบิดเป็นสิ่งที่สำคัญและมีค่าสูงสำหรับเซอร์โวมอเตอร์ ลักษณะการตอบสนองแบบไดนามิก เช่นแรงเหนี่ยวนำของขดลวดและความเฉื่อยของโรเตอร์ ยังมีความสำคัญ; ปัจจัยเหล่านี้จำกัดประสิทธิภาพโดยรวมของ servomechanism loop ในขณะที่เซอร์โวลูปที่มีประสิทธิภาพขนาดใหญ่ แต่ตอบสนองช้า อาจจะใช้ AC หรือ DC มอเตอร์ธรรมดาและระบบ ขับเคลื่อนที่ใช้การฟีดแบ็คแบบตำแหน่งหรือแบบความเร็วของมอเตอร์ เมื่อความต้องการการตอบสนองแบบไดนามิกเพิ่มขึ้น การออกแบบมอเตอร์แบบพิเศษเพิ่มเติมอย่าง เช่น มอเตอร์ไร้แกนถูกนำมาใช้ ความหนาแน่นของพลังงานและลักษณะสมบัติในการเร่งความเร็วที่เหนือกว่าของมอเตอร์ AC เมื่อเทียบกับมอเตอร์ DC มีแนวโน้มที่จะสนับสนุนการใช้งานของการใช้งานมอเตอร์แบบแม่เหล็กถาวรซิงโครนัส, BLDC, เหนี่ยวนำ และ การใช้งาน ไดรฟ์ SRM

ระบบเซอร์โวแตกต่างจากการใช้งานบางอย่างของมอเตอร์หมุนทีละขั้นในส่วนที่เป็นตำแหน่งป้อนกลับที่ให้อย่างต่อเนื่องในขณะที่มอเตอร์กำลังทำงาน; ระบบ stepper ช่วยให้มอเตอร์ไม่ " พลาดขั้นบันได" เพื่อความแม่นยำระยะสั้น ถึงแม้ว่าระบบ stepper อาจมีสวิทช์ที่บอกดำแหน่ง "บ้าน" หรือองค์ประกอบอื่นๆที่จะให้ความมั่นคงในระยะยาวของการควบคุม . ตัวอย่างเช่นเมื่อเครื่องพิมพ์ดอทเมทริกซ์ทั่วไปจะเริ่มต้นพิมพ์ ตัวควบคุมจะขับมอเตอร์หัวพิมพ์ไปอยู่ด้านซ้ายสุดของแถว ที่จุดนั้นเซ็นเซอร์ตำแหน่งจะกำหนดตำแหน่งบ้านและหยุดมอเตอร์ ตราบเท่าที่เปิดเครื่องอยู่ ตัวนับขั้นแบบสองทิศทางในไมโครโปรเซสเซอร์ของเครื่องพิมพ์จะคอยติดตามตำแหน่งของหัวพิมพ์

มอเตอร์สเต็ป[แก้]

บทความหลัก: Stepper motor

มอเตอร์สเต็ปใช้โรเตอร์ทำด้วยเหล็กอ่อน มีขดลวดแอ็คทีพตามที่แสดง ใน 'A' ขดลวดแอ็คทีพ มีแนวโน้มที่จะยึดโรเตอร์ให้อยู่กับที่ ใน 'B' อีกชุดหนึ่งของขดลวดจะมีกระแสไหล ซึ่งสร้างแรงบิด และการหมุน

มอเตอร์สเต็ปเป็นมอเตอร์ประเภทหนึ่งที่ใช้บ่อยเมื่อต้องการการหมุนที่แม่นยำ โรเตอร์ของมอเตอร์สเต็ปประกอบด้วยแม่เหล็กถาวร หรือโรเตอร์สนามแม่เหล็กอ่อนกับขั้วแม่เหล็กสำคัญที่ถูกควบคุมโดยชุดของแม่เหล็กภายนอกที่ถูกสลับด้วยระบบอิเล็กทรอนิกส์ มอเตอร์สเต็ปอาจจะคิดว่าเป็นลูกผสมระหว่างมอเตอร์ไฟฟ้า DC และขดลวดหมุน ในขณะที่แต่ละขดถูก energized ไปตามลำดับ โรเตอร์จะวางตัวเองในแนวสนามแม่เหล็กที่ผลิตโดยสนามพลังขดลวด แตกต่างจาก มอเตอร์ซิงโครนัสในการประยุกต์ใช้ มอเตอร์จะไม่หมุนอย่างต่อเนื่อง; มันจะ"ก้าวทีละขั้น" คือหมุนและหยุด จากตำแหน่งหนึ่งไปยังอีกตำแหน่งหนึ่งไปตามสนามขดลวดที่ถูกจ่ายพลังและหยุดจ่ายพลังตามลำดับ โรเตอร์อาจหมุตไปข้างหน้าหรือไปข้างหลัง และมันอาจเปลี่ยนทิศทาง หยุด เร็วขึ้น หรือ ช้าลง ในเวลาใดก็ได้

ตัวขับมอเตอร์สเต็ปอย่างง่ายจะจ่ายพลังหรือหยุดจ่ายพลังให้กับขดสวดสนามรวดเดียวให้โรเตอร์ไปหยุดที่ตำแหน่งใดก็ได้ ไดรเวอร์ที่ซับซ้อนมากขึ้น สามารถควบคุมพลังที่จ่ายให้ขดลวดสนามตามสัดส่วน ช่วยให้โรเตอร์หยุดในตำแหน่งระหว่างฟันเฟือง ซึ่งจะทำให้การหมุนเป็นไปอย่างราบรื่นมาก โหมดการทำงานลักษณะนี้ มักจะเรียกว่า microstepping มอเตอร์สเต็ปที่ควบคุมด้วยคอมพิวเตอร์เป็นหนึ่งในรูปแบบที่หลากหลายมากที่สุดของระบบการวางตำแหน่ง โดยเฉพาะอย่างยิ่ง เมื่อมีส่วนหนึ่งของระบบการควบคุมเซอร์โวแบบดิจิทัล

มอเตอร์สเต็ปสามารถหมุนไปที่มุมที่เฉพาะเจาะจงด้วยขั้นตอนที่ไม่ต่อเนื่องได้อย่างง่ายดาย และด้วยเหตุนี้ มอเตอร์สเต็ปจึงถูกใช้สำหรับวางตำแหน่งหัวอ่าน/เขียนในเครื่องฟลอปปี้ดิสเก็ตของคอมพิวเตอร์ พวกมันถูกนำมาใช้เพื่อวัตถุประสงค์เดียวกันในดิสก์ไดรฟ์ของคอมพิวเตอร์ก่อนยุคจิกะไบต์ ที่ให้ความแม่นยำและความเร็วที่เพียงพอสำหรับการวางตำแหน่งที่ถูกต้องของ หัวอ่าน/เขียนของฮาร์ดดิสก์ไดรฟ์ เมื่อไดรฟ์มีความหนาแน่นของข้อมูลเพิ่มขึ้น ข้อจำกัดของ ความแม่นยำและความเร็วของมอเตอร์สเต็ป ทำให้พวกมันล้าสมัยและสูญเสียตวามสามารถในการแข่งขันสำหรับฮาร์ดดิสก์ ฮาร์ดดิสก์ไดรฟ์รุ่นใหม่ใช้ขดลวดเสียงเป็นตัวขับเคลื่อนหัวอ่าน (คำว่า "วอยซ์คอยล์" หมายถึงโครงสร้างในลำโพง(ชนิดกรวย)ทั่วไป โครงสร้างนี้ถูกใช้วางตำแหน่งหัวอ่านอยู่พักหนึ่ง ไดรฟ์ที่ทันสมัยจะมีขดลวดบนเดือยหมุน ขดลวดจะโยกไปข้างหน้าและไปข้างหลัง เหมือนกับใบพัดของพัดลมที่กำลังหมุน. อย่างไรก็ตาม เหมือนกับวอยซ์คอยล์ ตัวนำคอยล์ตัวกระตุ้นที่ทันสมัย ​​(ลวดแม่เหล็ก)เคลื่อนที่ตั้งฉากกับเส้นแรงสนามแม่เหล็ก)

มอเตอร์สเต็ปมักจะใช้ในเครื่องพิมพ์คอมพิวเตอร์ สแกนเนอร์แสง และ เตรื่องถ่ายเอกสารแบบ ดิจิทัล หัวพิมพ์(ของ dot matrix และเครื่องพิมพ์อิงค์เจ็ท)และลูกกลิ้งป้อนกระดาษ ในทำนองเดียวกัน plotters คอมพิวเตอร์จำนวนมาก (ซึ่งตั้งแต่ช่วงต้นทศวรรษ 1990 ได้ถูกแทนที่ด้วยอิงค์เจ็ทขนาดใหญ่ และเครื่องพิมพ์เลเซอร์) ที่ใช้มอเตอร์สเต็ปแบบโรตารีสำหรับ ปากกาและลูกกลิ้ง; ทางเลือกทั่วไปมีทั้งมอเตอร์สเต็ปเชิงเส้น หรือ servomotors ที่มีระบบการควบคุมอนาล็อกวงปิด

สิ่งที่เรียกว่านาฬิกาข้อมือควอทซ์แอนะล็อกประกอบด้วยมอเตอร์สเต็ปธรรมดาที่มีขนาดเล็กที่สุด ได้แก่คอยล์หนึ่งชุดที่กินไฟน้อยมากและโรเตอร์แม่เหล็กถาวร มีมอเตอร์ชนิดเดียวกันเพื่อขับนาฬิกาควอทซ์พลังงานแบตเตอรี่ บางส่วนของนาฬิกาเหล่านี้ เช่น chronographs, มี มากกว่าหนึ่งมอเตอร์สเต็ป

ที่เกี่ยวข้องอย่างใกล้ชิดในการออกแบบมอเตอร์ซิงโครนัส AC สามเฟส, มอเตอร์สเต็ปและ SRMs จะจัดเป็นประเภทมอเตอร์รีลักแตนซ์ปรับได้. มอเตอร์สเต็ปยังมักจะใช้ในเครื่องพิมพ์ คอมพิวเตอร์ สแกนเนอร์ และเครื่องคอมพิวเตอร์ควบคุมเชิงตัวเลข (CNC ) เครื่องจักร เช่นเราต์เตอร์, ตัวตัดพลาสม่า และ เครื่องกลึงซีเอ็นซี

มอเตอร์แนวราบ[แก้]

บทความหลัก: Linear motor

มอเตอร์แนวราบเป็นมอเตอร์ไฟฟ้าที่ "ไม่หมุน" คือแทนที่จะผลิตแรงบิด(หมุน) แต่จะผลิตแรงในแนวเส้นตรงตามความยาวของมัน

มอเตอร์แนวราบส่วนใหญ่เป็นมอเตอร์เหนี่ยวนำหรือมอเตอร์สเต็ป มอเตอร์แนวราบมักจะพบใน รถไฟเหาะทั้งหลาย ที่ความเคลื่อนไหวอย่างรวดเร็วของโบกี้ไร้มอเตอร์ถูกควบคุมโดยรางรถไฟ พวกมันยังถูกใช้ในรถไฟ maglev โดยที่ รถไฟ "บิน" เหนือพื้นดิน ในระดับที่มีขนาดเล็ก ตัวพล็อตด้วยปากกาของ HP รุ่น 7225A ในยุค 1978 ใช้มอเตอร์สเต็ปแนวราบสองตัวในการลากปากกาไปตามแกน X และแกน Y.

แรงเคลื่อนไฟฟ้าย้อนกลับ[แก้]

บทความหลัก: Electromotive force

ขณะที่ขดลวดอเมเจอร์ของมอเตอร์กระแสตรงกำลังเคลื่อนที่ผ่านสนามแม่เหล็ก จะเกิดแรงดันไฟฟ้าเหนี่ยวนำขึ้นบนขดลวดนั้น แรงดันไฟฟ้านี้มีแนวโน้มที่จะต่อต้านกับแรงดันที่จ่ายให้มอเตอร์ ดังนั้นจึงเรียกว่า "แรงเคลื่อนไฟฟ้าย้อนกลับ" (อังกฤษ: back EMF) แรงดันไฟฟ้าที่เป็นสัดส่วนกับความเร็วในการทำงานของมอเตอร์ back EMF ของมอเตอร์บวกแรงดันไฟฟ้าที่ตกคร่อมตัวต้านทานภายในของขดลวดและแปรง จะต้องเท่ากับแรงดันไฟฟ้าที่แปรงถ่าน สิ่งนี้คือกลไกพื้นฐานของการควบคุมความเร็วในมอเตอร์ DC ถ้าโหลดเพิ่ม มอเตอร์จะช้าลง ซึ่งเป็นผลให้ back EMF ลดลงและกระแสจะถูกดึงจากแหล่งจ่ายมากขึ้น กระแสที่เพิ่มขึ้นนี้จะเพิ่มแรงบิดเพื่อให้สมดุลกับโหลดใหม่

ในมอเตอร์ AC บางครั้งก็เป็นประโยชน์ที่จะพิจารณาแหล่งที่มาของ back emf; สิ่งนี้เป็นความกังวลโดยเฉพาะสำหรับการควบคุมความเร็วแบบปิดของมอเตอร์เหนี่ยวนำด้วย VFDs (ตัวอย่าง)

การสูญเสีย[แก้]

การสูญเสียในมอเตอร์ส่วนใหญ่เนื่องจากการสูญเสียในความต้านทานของขดลวด การสูญเสียในแกน และการสูญเสียทางกลในแบริ่ง และการสูญเสียทางอากาศพลศาสตร์ถ้าใช้พัดลมระบายความร้อน

ความสูญเสียยังเกิดขึ้นในตัวแลกเปลี่ยนอีกด้วย, ตัวแลกเปลี่ยนแบบกลไกทำให้เกิดประกายไฟ และ ตัวแลกเปลี่ยนแบบอิเล็กทรอนิกส์ทำให้เกิดความร้อน

อ้างอิง[แก้]

  1. Faraday, Michael (1822). "On Some New Electro-Magnetical Motion, and on the Theory of Magnetism". Quarterly Journal of Science, Literature and the Arts. Royal Institution of Great Britain. XII: 74–96 (§IX). สืบค้นเมื่อ 12 February 2013.
  2. "The Development of the Electric Motor,". Early Electric Motors. SparkMuseum. สืบค้นเมื่อ 12 February 2013.