ผลต่างระหว่างรุ่นของ "ตัวเก็บประจุ"

จากวิกิพีเดีย สารานุกรมเสรี
เนื้อหาที่ลบ เนื้อหาที่เพิ่ม
บรรทัด 52: บรรทัด 52:
เป็น Capacitor ชนิดที่ไม่มีค่าคงที่ ซึ่งจะมีการนำวัสดุต่างๆ มาสร้างขึ้นเป็น Capacitor โดยทั่วไปจะมีค่าความจุไม่มากนัก โดยประมาณไม่เกิน 1 ไมโครฟารัด (m F) Capacitor ชนิดนี้เปลี่ยนค่าความจุได้ จึงพบเห็นอยู่ ในเครื่องรับวิทยุต่าง ๆ ซึ่งเป็นตัวเลือกหาสถานีวิทยุโดยมีแกนหมุน Trimmer หรือ Padder เป็น Capacitor ชนิดปรับค่าได้ ซึ่งคล้าย ๆ กับ Variable Capacitor แต่จะมีขนาดเล็กกว่า การใช้ Capacitor แบบนี้ถ้าต่อในวงจรแบบอนุกรมกับวงจรเรียกว่า Padder Capacitor ถ้านำมาต่อขนานกับวงจร เรียกว่า Trimmer.
เป็น Capacitor ชนิดที่ไม่มีค่าคงที่ ซึ่งจะมีการนำวัสดุต่างๆ มาสร้างขึ้นเป็น Capacitor โดยทั่วไปจะมีค่าความจุไม่มากนัก โดยประมาณไม่เกิน 1 ไมโครฟารัด (m F) Capacitor ชนิดนี้เปลี่ยนค่าความจุได้ จึงพบเห็นอยู่ ในเครื่องรับวิทยุต่าง ๆ ซึ่งเป็นตัวเลือกหาสถานีวิทยุโดยมีแกนหมุน Trimmer หรือ Padder เป็น Capacitor ชนิดปรับค่าได้ ซึ่งคล้าย ๆ กับ Variable Capacitor แต่จะมีขนาดเล็กกว่า การใช้ Capacitor แบบนี้ถ้าต่อในวงจรแบบอนุกรมกับวงจรเรียกว่า Padder Capacitor ถ้านำมาต่อขนานกับวงจร เรียกว่า Trimmer.


==รีแอคแตนซ์51==
==รีแอคแตนซ์==
ตัวเก็บประจุก็มีค่าความต้านทานเสมือนเช่นเดียวกับตัวเหนี่ยวนำ รีแอคแตนซ์ตัวเก็บประจุ (สัญลักษณ์ X<sub>C</sub>) เป็นค่าต้านทานของตัวเก็บประจุทางไฟฟ้ากระแสสลับ มีหน่วยการวัดเป็นโอห์ม (Ω) แต่รีแอคแตนซ์มีความซับซ้อนมากกว่าความต้านทาน เพราะค่าของมันขึ้นอยู่กับความถี่ (f) ของสัญญาณไฟฟ้าที่ไหลผ่านตัวเก็บประจุ (C)
ตัวเก็บประจุก็มีค่าความต้านทานเสมือนเช่นเดียวกับตัวเหนี่ยวนำ รีแอคแตนซ์ตัวเก็บประจุ (สัญลักษณ์ X<sub>C</sub>) เป็นค่าต้านทานของตัวเก็บประจุทางไฟฟ้ากระแสสลับ มีหน่วยการวัดเป็นโอห์ม (Ω) แต่รีแอคแตนซ์มีความซับซ้อนมากกว่าความต้านทาน เพราะค่าของมันขึ้นอยู่กับความถี่ (f) ของสัญญาณไฟฟ้าที่ไหลผ่านตัวเก็บประจุ (C)
:<math>X_\mathrm C = {1\over 2\pi f C} \,</math>
:<math>X_\mathrm C = {1\over 2\pi f C} \,</math>

รุ่นแก้ไขเมื่อ 01:00, 25 กุมภาพันธ์ 2562

ตัวเก็บประจุ
ชนิดพาสซีฟ
ประดิษฐ์โดยEwald Georg von Kleist
สัญลักษณ์

ตัวเก็บประจุ หรือ คาปาซิเตอร์ (อังกฤษ: capacitor หรือ อังกฤษ: condenser) เป็นอุปกรณ์อิเล็กทรอนิกส์อย่างหนึ่ง ทำหน้าที่เก็บพลังงานในรูปสนามไฟฟ้า ที่สร้างขึ้นระหว่างคู่ฉนวน โดยมีค่าประจุไฟฟ้าเท่ากัน แต่มีชนิดของประจุตรงข้ามกัน บ้างเรียกตัวเก็บประจุนี้ว่า คอนเดนเซอร์ (condenser) แต่ส่วนใหญ่เรียกสั้น ๆ ว่า แคป (Cap) เป็นอุปกรณ์พื้นฐานสำคัญในงานอิเล็กทรอนิกส์ และพบได้แทบทุกวงจร มีคุณสมบัติตรงข้ามกับตัวเหนี่ยวนำ จึงมักใช้หักร้างกันหรือทำงานร่วมกันในวงจรต่าง ๆ เป็นหนึ่งในสามชิ้นส่วนวงจรเชิงเส้นแบบพาสซีฟที่ประกอบขึ้นเป็นวงจรไฟฟ้า ในระบบจ่ายไฟฟ้าใช้ตัวเก็บประจุเป็นชุดหลายตัวเพิ่มค่าตัวประกอบกำลัง (Power factor) ให้กับระบบไฟฟ้าที่เรียกว่า แคปแบงค์ (Cap Bank) ตัวเก็บประจุบางชนิดในอนาคตมีความเป็นไปได้สูงที่จะถูกนำมาใช้แทนแบตเตอรี่ เช่น ตัวเก็บประจุยิ่งยวด (Supercapacitor)

ลักษณะทางกายภาพ

ตัวเก็บประจุนั้นประกอบด้วยขั้วไฟฟ้า (หรือเพลต) 2 ขั้ว แต่ละขั้วจะเก็บประจุชนิดตรงกันข้ามกัน ทั้งสองขั้วมีสภาพความจุ และมีฉนวนหรือไดอิเล็กตริกเป็นตัวแยกคั่นกลาง ประจุนั้นถูกเก็บไว้ที่ผิวหน้าของเพลต โดยมีไดอิเล็กตริกกั้นเอาไว้ เนื่องจากแต่ละเพลตจะเก็บประจุชนิดตรงกันข้าม แต่มีปริมาณเท่ากัน ดังนั้นประจุสุทธิในตัวเก็บประจุ จึงมีค่าเท่ากับ ศูนย์ เสมอ

การทำงานของตัวเก็บประจุ

การเก็บประจุ

การเก็บประจุ คือ การเก็บอิเล็กตรอนไว้ที่เพลตของตัวเก็บประจุ เมื่อนำแบตเตอรี่ต่อกับตัวเก็บประจุ อิเล็กตรอนจากขั้วลบของแบตเตอรี่ จะเข้าไปรวมกันที่แผ่นเพลต ทำให้เกิดประจุลบขึ้นและยังส่งสนามไฟฟ้าไป ผลักอิเล็กตรอนของแผ่นเพลตตรงข้าม ซึ่งโดยปกติในแผ่นเพลตจะมี ประจุเป็น + และ - ปะปนกันอยู่ เมื่ออิเล็กตรอนจากแผ่นเพลตนี้ถูก ผลักให้หลุดออกไปแล้วจึงเหลือประจุบวกมากกว่าประจุลบ ยิ่งอิเล็กตรอนถูกผลักออกไปมากเท่าไร แผ่นเพลตนั้นก็จะเป็นบวกมากขึ้นเท่านั้น

การคายประจุ

ตัวเก็บประจุที่ถูกประจุแล้ว ถ้าเรายังไม่นำขั้วตัวเก็บประจุมาต่อกัน อิเล็กตรอนก็ยังคงอยู่ที่แผ่นเพลต แต่ถ้ามีการครบวงจร ระหว่างแผ่นเพลตทั้งสองเมื่อไร อิเล็กตรอนก็จะวิ่งจากแผ่นเพลตทางด้านลบ ไปครบวงจรที่แผ่นเพลตบวกทันที เราเรียกว่า "การคายประจุ"

ชนิดของตัวเก็บประจุ

ชนิดของตัวเก็บประจุแบ่งตามวัสดุการใช้งานแบ่งออกได้ 2 ชนิด คือ

ตัวเก็บประจุชนิดคงที่ Fixed capacitor

Capacitor ชนิดนี้จะมีขั้วบวกและขั้วลบบอกไว้ ส่วนใหญ่จะเป็นแบบกลมดังนั้น การนำไปใช้งานจะต้องคำนึงถึงการต่อขั้วให้กับ Capacitor ด้วย จะสังเกตขั้วง่าย ๆ ขั้วไหนที่เป็นขั้วลบจะมีลูกศรชี้ไปที่ขั้วนั้น และในลูกศรจะมีเครื่องหมายลบบอกเอาไว้

  • ตัวเก็บประจุแบบกระดาษ (Paper capacitor) ตัวเก็บประจุแบบกระดาษ นำไปใช้งานซึ่งต้องการค่าความต้านทานของฉนวนที่มี ค่าสูง และ มี เสถียรภาพต่ออุณหภูมิสูงได้ดี มีค่าความจุที่ดีใน ย่านอุณหภูมิที่กว้าง
  • ตัวเก็บประจุแบบไมก้า (Mica capacitor)

ตัวเก็บประจุแบบไมก้านี้ จะมีเสถียรภาพต่ออุณหภูมิ และ ความถี่ดี มีค่าตัวประกอบการสูญเสียต่ำ และ สามารถทำงาน ได้ดีที่ความถี่สูง จะถูกนำมาใช้ในงานหลายอย่าง เช่น ในวงจะจูนวงจรออสซิสเตอร์ วงจรกรองสัญญาณ และวงจรขยาย ความ ถี่วิทยุกำลังสูง จะไม่มีการผลิตตัวเก็บประจุแบบไมก้าค่าความจุสูงๆ ออกมา เนื่องจากไมก้ามีราคาแพง จะทำให้ค่าใช้จ่ายในการ ผลิตสูงเกินไป

  • ตัวเก็บประจุแบบเซรามิก (Ceramic capacitor)

ตัวเก็บประจุชนิดเซรามิก โดยทั่วไปตัวเก็บประจุชนิดนี้มีลักษณะกลมๆ แบนๆ บางครั้งอาจพบแบบสี่เหลี่ยมแบนๆ ส่วนใหญ่ตัวเก็บประจุชนิดนี้ มีค่าน้อยกว่า 1 ไมโครฟารัด และเป็นตัวเก็บประจุชนิดที่ไม่มีขั้ว และสามารถทนแรงดันได้ประมาณ 50-100 โวลต์ค่าความจุของตัวเก็บประจุชนิดเซรามิกที่มีใช้กันในปัจจุบันอยู่ในช่วง 1 พิโกฟารัด ถึง 0.1 ไมโครฟารัด

  • ตัวเก็บประจุแบบอิเล็กโทรไลติก (Electrolytic capacitor)

ตัวเก็บประจุชนิดอิเล็กโทรไลติก ตัวเก็บประจุชนิดนี้ต้องระวังในการนำไปใช้งานด้วย เพราะมีขั้วที่แน่นอนพิมพ์ติดไว้ด้าน ข้างตัวถังอยู่แล้ว ถ้าป้อนแรงดันให้กับตัวเก็บประจุผิดขั้ว อาจเกิดความเสียหายกับตัวมันและอุปกรณ์ที่ประกอบร่วมกันได้ ขั้วของตัวเก็บประจุชนิดนี้สังเกตได้ง่ายๆ เมื่อตอนซื้อมา คือ ขาที่ยาวจะเป็นขั้วบวก และขาที่สั้นจะเป็นขั้วลบ

  • ตัวเก็บประจุแบบน้ำมัน (Oil capacitor)
  • ตัวเก็บประจุแบบโพลีสไตลีน (Polyethylene capacitor)
  • ตัวเก็บประจุ แทนทาลั่ม (Tantalum capacitor)

ตัวเก็บประจุแบบแทนทาลั่ม จะให้ค่าความจุสูงในขณะที่ตัวถังที่บรรจุมีขนาดเล็ก และมีอายุในการเก็บรักษาดีมาก ตัวเก็บประจุแบบแทนทาลั่มนี้มีหลายชนิดให้เลือกใช้ เช่น ชนิด โซลิต ( solid type ) ชนิด ซินเทอร์สลัก ( sintered slug ) ชนิดฟอลย์ธรรมดา ( plain foil ) ชนิดเอ็ชฟอยล์ ( etched foil ) ชนิดเว็ทสลัก ( wet slug ) และ ชนิดชิป ( chip ) การนำไปใช้งานต่างๆ ประกอบด้วยวงจรกรองความถี่ต่ำ วงจรส่งผ่านสัญญาณ ชนิด โซลิตนั้นไม่ไวต่ออุณหภูมิ และ มีค่าคุณ สมบัติระหว่างค่าความจุอุณหภูมิต่ำกว่า ตัวเก็บประจุ แบบอิเล็กทรอไลติกชนิดใด ๆ สำหรับงานที่ตัวเก็บประจุแบบแทนทาลั่มไม่เหมาะกับ วงจรตั้งเวลาที่ใช้ RC ระบบกระตุ้น ( triggering system ) หรือ วงจรเลื่อนเฟส ( phase - shift net work ) เนื่องจากตัวเก็บประจุแบบนี้ มีค่าคุณสมบัติของการดูดกลืนของไดอิเล็กตริก สูง ซึ่งหมายถึงเมื่อตัวเก็บประจุถูกคายประจุ สารไดอิเล็กตริกยังคงมีประจุหลงเหลืออยู่ ดังนั้นเม้ว่าตัวเก็บประจุที่มีคุณสมบัติของ การดูดกลืนของสารไดอิเล็กตริกสูงจะถูกคายประจุประจุจนเป็นศูนษ์แล้วก็ตาม จะยังคงมีประจุเหลืออยู่เป็นจำนวนมากพอ ที่ จะทำ ให้เกิดปัญหาในวงจรตั้งเวลา และ วงจรอื่นที่คล้ายกัน

  • ตัวเก็บประจุแบบไมลา (Milar capacitor)
  • ตัวเก็บประจุแบบไบโพลา (Bipolar capacitor)
  • ตัวเก็บประจุแบบโพลีโพรไพลีน (Poiypropyrene)

ตัวเก็บประจุแบบปรับค่าได้ Variable capacitor

เป็น Capacitor ชนิดที่ไม่มีค่าคงที่ ซึ่งจะมีการนำวัสดุต่างๆ มาสร้างขึ้นเป็น Capacitor โดยทั่วไปจะมีค่าความจุไม่มากนัก โดยประมาณไม่เกิน 1 ไมโครฟารัด (m F) Capacitor ชนิดนี้เปลี่ยนค่าความจุได้ จึงพบเห็นอยู่ ในเครื่องรับวิทยุต่าง ๆ ซึ่งเป็นตัวเลือกหาสถานีวิทยุโดยมีแกนหมุน Trimmer หรือ Padder เป็น Capacitor ชนิดปรับค่าได้ ซึ่งคล้าย ๆ กับ Variable Capacitor แต่จะมีขนาดเล็กกว่า การใช้ Capacitor แบบนี้ถ้าต่อในวงจรแบบอนุกรมกับวงจรเรียกว่า Padder Capacitor ถ้านำมาต่อขนานกับวงจร เรียกว่า Trimmer.

รีแอคแตนซ์

ตัวเก็บประจุก็มีค่าความต้านทานเสมือนเช่นเดียวกับตัวเหนี่ยวนำ รีแอคแตนซ์ตัวเก็บประจุ (สัญลักษณ์ XC) เป็นค่าต้านทานของตัวเก็บประจุทางไฟฟ้ากระแสสลับ มีหน่วยการวัดเป็นโอห์ม (Ω) แต่รีแอคแตนซ์มีความซับซ้อนมากกว่าความต้านทาน เพราะค่าของมันขึ้นอยู่กับความถี่ (f) ของสัญญาณไฟฟ้าที่ไหลผ่านตัวเก็บประจุ (C)

รีแอคแตนซ์ตัวเก็บประจุมีค่ามากที่ความถี่ต่ำและค่าน้อยที่ความถี่สูง เช่นตัวเก็บประจุค่า 1µF มีรีแอคแตนซ์ 3.2kΩ ที่ความถี่ 50Hz แต่ที่ความถี่สูงกว่าเช่นที่ 10kHz จะมีค่ารีแอคแตนซ์เพียง 16Ω สำหรับดีซีคงที่ซึ่งความถี่เป็นศูนย์ XC มีค่าเป็นอนันต์ (ความต้านทั้งหมด) เป็นที่มาของกฎที่ว่า ตัวเก็บประจุยอมให้กระแสสลับ(AC)ผ่านแต่ปิดกั้นกระแสตรง(DC)

อ้างอิง

แหล่งข้อมูลอื่น