ผลต่างระหว่างรุ่นของ "มาตราริกเตอร์"

จากวิกิพีเดีย สารานุกรมเสรี
เนื้อหาที่ลบ เนื้อหาที่เพิ่ม
ไม่มีความย่อการแก้ไข
ป้ายระบุ: แก้ไขจากอุปกรณ์เคลื่อนที่ แก้ไขจากเว็บสำหรับอุปกรณ์เคลื่อนที่
Portalian (คุย | ส่วนร่วม)
บรรทัด 58: บรรทัด 58:
| 8.0-8.9 || rowspan="2"| รุนแรงมาก || สร้างความเสียหายรุนแรงได้ในรัศมีเป็นร้อยกิโลเมตร || 1 ครั้ง/ปี
| 8.0-8.9 || rowspan="2"| รุนแรงมาก || สร้างความเสียหายรุนแรงได้ในรัศมีเป็นร้อยกิโลเมตร || 1 ครั้ง/ปี
|-
|-
| 9.0-9.9 || 'ล้างผลาญ' ทุกสิ่งทุกอย่างในรัศมีเป็นพันกิโลเมตร || 1 ครั้ง/20 ปี
| 9.0 ขึ้นไป || 'ล้างผลาญ' ทุกสิ่งทุกอย่างในรัศมีเป็นพันกิโลเมตร || 1 ครั้ง/20 ปี
|-
| 10.0 ขึ้นไป || ทำลายล้าง || โลกแตกอย่างสิ้นเชิง || หายากมาก (ไม่ทราบจำนวนครั้งที่เกิด)
|-
|-
|}
|}

รุ่นแก้ไขเมื่อ 09:58, 19 มิถุนายน 2561

มาตราริกเตอร์ (อังกฤษ: Richter magnitude scale) หรือที่รู้จักกันว่า มาตราท้องถิ่น (อังกฤษ: local magnitude scale; ML) เป็นการกำหนดตัวเลขเพื่อบอกปริมาณของพลังงานแผ่นดินไหวที่ปลดปล่อยออกมาจากแผ่นดินไหวครั้งหนึ่ง มันเป็นมาตราส่วนเชิงลอการิทึมฐานสิบ ซึ่งสามารถคำนวณได้จากลอการิทึมของแอมพลิจูดการสั่นของการกระจัดที่มีค่ามากที่สุดจากศูนย์บนเครื่องตรวจวัดแผ่นดินไหวบางประเภท (Wood–Anderson torsion) ยกตัวอย่างเช่น แผ่นดินไหวที่สามารถวัดค่าได้ 5.0 ตามมาตราริกเตอร์จะมีแอพลิจูดการสั่นมากเป็น 10 เท่าของแผ่นดินไหวที่วัดค่าได้ 4.0 ตามมาตราริกเตอร์ ขีดจำกัดบนที่มีประสิทธิภาพของการวัดตามมาตราริกเตอร์นี้ควรต่ำกว่า 9 และต่ำกว่า 10 สำหรับมาตราโมเมนต์แมกนิจูด เมื่อตรวจวัดแผ่นดินไหวขนาดใหญ่[1]

ปัจจุบันมาตราริกเตอร์ถูกแทนที่ด้วยมาตราขนาดโมเมนต์ ซึ่งเป็นมาตรฐานที่จะให้ค่าที่โดยทั่วไปแล้วจะมีค่าใกล้เคียงกันสำหรับแผ่นดินไหวขนาดกลาง (3-7 แมกนิจูด) แต่ที่ไม่เหมือนกับมาตราริกเตอร์คือ มาตราโมเมนต์แมกนิจูดจะรายงานสมบัติพื้นฐานของแผ่นดินไหวจากข้อมูลเครื่องตรวจวัด แทนที่จะเป็นการรายงานข้อมูลเครื่องตรวจวัด ซึ่งไม่สามารถเปรียบเทียบกันได้ในแผ่นดินไหวทุกครั้ง และค่าที่ได้จะไม่สมบูรณ์ในแผ่นดินไหวความรุนแรงสูง เนื่องจากมาตราโมเมนต์แมกนิจูดมักจะให้ค่าที่ใกล้เคียงกันกับมาตราริกเตอร์ แมกนิจูดของแผ่นดินไหวที่ได้รับรายงานในสื่อมวลชนจึงมักจะรายงานโดยไม่ระบุว่าเป็นการวัดความรุนแรงตามมาตราใด

พลังงานที่ปลดปล่อยออกมาของแผ่นดินไหว ซึ่งสัมพันธ์อย่างใกล้ชิดกับพลังทำลายล้างของมัน สามารถวัดได้จาก 3/2 เท่าของแอมพลิจูดการสั่น ดังนั้น แผ่นดินไหวที่มีความรุนแรงแตกต่างกัน 1 แมกนิจูดจึงมีค่าเท่ากับพหุคูณของ 31.6 (= (101.0)(3 / 2)) ในพลังงานที่ปลดปล่อยออกมา และที่แตกต่างกัน 2 แมกนิจูด จะมีค่าเท่ากับพหุคณของ 1000 (= (102.0)(3 / 2)) ในพลังงานที่ปลดปล่อยออกมา[2] (ความจริงแล้ว แมนติจูด ใช้วัดปริมาณพลังงานของแผ่นดินไหวทีแท้จริง แต่คนไทยเรียกผิดเป็นริกเตอร์)

ประวัติ

มาตราริกเตอร์ได้รับการเสนอขึ้นเมื่อ ค.ศ. 1935 โดยนักวิทยาแผ่นดินไหวสองคน คือ เบโน กูเทนเบิร์ก (Beno Gutenbreg) และ ชาลส์ ฟรานซิส ริกเตอร์ (Charles Francis Richter)

เดิมนั้นมีการกำหนดมาตรานี้เพื่อใช้วัดขนาดของแผ่นดินไหวในท้องถิ่นทางใต้ของแคลิฟอร์เนียในสหรัฐอเมริกา ที่บันทึกได้ด้วยอุปกรณ์ที่เรียกว่า เครื่องวัดความไหวสะเทือน (seismograph) แผ่นดินไหวที่มีขนาดน้อยที่สุดในเวลานั้นถือเป็นค่าใกล้เคียงศูนย์ มาตราดังกล่าวแบ่งเป็นระดับ โดย ทุกๆ 1 ริกเตอร์ที่เพิ่มขึ้น แสดงว่าแผ่นดินไหวแรงขึ้น 10 เท่า

มาตราริกเตอร์ไม่มีขีดจำกัดว่ามีค่าสูงสุดเท่าใด แต่โดยทั่วไปกำหนดไว้ในช่วง 0 - 9

ภายหลังเมื่อเครื่องวัดความไหวสะเทือนมีความละเอียดมากขึ้น สามารถวัดขนาดของแผ่นดินไหวได้ละเอียด ทั้งในระดับที่ต่ำกว่า 0 (สำหรับค่าที่ได้น้อยกว่า 0 ถือเป็นค่าติดลบ) และที่สูงกว่า 9

ริกเตอร์แมกนิจูด

ริกเตอร์แมกนิจูดของแผ่นดินไหวสามารถหาค่าได้จากลอการิทึมของแอมพลิจูดของคลื่นที่สามารถตรวจวัดได้โดยเครื่องวัดแผ่นดินไหว (ต่อมามีการแก้ไขรูปแบบการคำนวณ เพื่อชดเชยระยะห่างระหว่างเครื่องวัดแผ่นดินไหวจำนวนมากและศูนย์กลางแผ่นดินไหว) สูตรดั้งเดิมเป็นดังนี้[3]

โดยที่ A เป็นการเบี่ยงเบนที่มีค่ามากที่สุดของเครื่องวัดแผ่นดินไหววูด-แอนเดอร์สัน ในเชิงประจักษ์แล้ว การทำงานของ A0 ขึ้นอยู่กับระยะทางจากจุดเหนือศูนย์เกิดแผ่นดินไหวของสถานี (δ) ในทางปฏิบัติแล้ว การอ่านค่าจากสถานีสังเกตการณ์ทั้งหมดจะถูกนำมาเฉลี่ยหลังจากมีการปรับแก้โดยเฉพาะของแต่ละสถานีเพื่อให้ได้มาซึ่งค่ามาตราริกเตอร์

เนื่องจากพื้นฐานลอการิทึมของมาตราริกเตอร์ การเพิ่มขึ้นของตัวเลข 1 หน่วยหมายความว่า แอมพลิจูดที่สามารถวัดได้มีค่าเพิ่มขึ้นจากเดิม 10 เท่า ในแง่ของพลังงาน การที่แมกนิจูดเพิ่มขึ้น 1 หน่วย หมายความว่า มีพลังงานปลดปล่อยออกมามาขึ้น 31.6 เท่า และการเพิ่มขึ้น 0.2 แมกนิจูด หมายความว่าพลังงานจะปลดปล่อยออกมามากกว่าเดิมถึง 2 เท่า

ตารางแสดงมาตราริกเตอร์และผลกระทบ โดยสำนักงานสำรวจธรณีวิทยาสหรัฐอเมริกา[4]
ตัวเลขริกเตอร์ จัดอยู่ในระดับ ผลกระทบ อัตราการเกิดทั่วโลก
1.9 ลงไป ไม่รู้สึก ไม่มี ไม่สามารถรู้สึกได้[5] 8,000 ครั้ง/วัน
2.0-2.9 เบามาก คนทั่วไปมักไม่รู้สึก แต่ก็สามารถรู้สึกได้บ้าง และตรวจจับได้ง่าย 1,000 ครั้ง/วัน
3.0-3.9 คนส่วนใหญ่รู้สึกได้ และบางครั้งสามารถสร้างความเสียหายได้บ้าง 49,000 ครั้ง/ปี
4.0-4.9 เบา ข้าวของในบ้านสั่นไหวชัดเจน สามารถสร้างความเสียหายได้ปานกลาง 6,200 ครั้ง/ปี
5.0-5.9 ปานกลาง สร้างความเสียหายยับเยินได้กับสิ่งก่อสร้างที่ไม่มั่นคง แต่กับสิ่งก่อสร้างที่มั่นคงนั้นไม่มีปัญหา 800 ครั้ง/ปี
6.0-6.9 แรง สร้างความเสียหายที่ค่อนข้างรุนแรงได้ในรัศมีประมาณ 80 กิโลเมตร 120 ครั้ง/ปี
7.0-7.9 รุนแรง สามารถสร้างความเสียหายรุนแรงในบริเวณกว้างกว่า 18 ครั้ง/ปี
8.0-8.9 รุนแรงมาก สร้างความเสียหายรุนแรงได้ในรัศมีเป็นร้อยกิโลเมตร 1 ครั้ง/ปี
9.0 ขึ้นไป 'ล้างผลาญ' ทุกสิ่งทุกอย่างในรัศมีเป็นพันกิโลเมตร 1 ครั้ง/20 ปี

แผ่นดินไหวครั้งรุนแรงที่สุดที่เคยเกิดขึ้น คือ แผ่นดินไหวในประเทศชิลี ที่เมืองวัลดิเวีย พ.ศ. 2503 ซึ่งสามารถวัดความรุนแรงได้ 9.5 [6]

อ้างอิง

  1. "Richter scale". Glossary. USGS. March 31, 2010.
  2. USGS: Measuring the Size of an Earthquake, Section 'Energy, E'
  3. Ellsworth, William L. (1991). "The Richter Scale ML, from The San Andreas Fault System, California (Professional Paper 1515)". USGS: c6, p177. สืบค้นเมื่อ 2008-09-14. {{cite journal}}: Cite journal ต้องการ |journal= (help); ระบุ |author= และ |last= มากกว่าหนึ่งรายการ (help)
  4. USGS: FAQ- Measuring Earthquakes
  5. เป็นสิ่งที่ริกเตอร์เคยคิดไว้ แต่หลักฐานปัจจุบันแสดงให้เห็นว่าแผ่นดินไหวที่มีแมกนิจูดติดลบ (อาจมีค่าเพียง -0.7) ยังสามารถรู้สึกได้ โดยเฉพาะอย่างยิ่งเมื่อจุดเกิดแผ่นดินไหวอยู่ลึกลงไปไม่กี่ร้อยเมตร ดูที่ Thouvenot, F.; Bouchon, M. (2008) และ What is the lowest magnitude threshold at which an earthquake can be felt or heard, or objects thrown into the air?, in Fréchet, J., Meghraoui, M. & Stucchi, M. (eds), Modern Approaches in Solid Earth Sciences (vol. 2), Historical Seismology: Interdisciplinary Studies of Past and Recent Earthquakes, Springer, Dordrecht, 313–326.
  6. USGS: List of World's Largest Earthquakes

ดูเพิ่ม