ผลต่างระหว่างรุ่นของ "สมการชเรอดิงเงอร์"

จากวิกิพีเดีย สารานุกรมเสรี
เนื้อหาที่ลบ เนื้อหาที่เพิ่ม
ไม่มีความย่อการแก้ไข
Piyaon (คุย | ส่วนร่วม)
ไม่มีความย่อการแก้ไข
บรรทัด 46: บรรทัด 46:
ซึ่งสมการชเรอดิงเงอร์จะใช้ในการแก้ปัญหาการเคลื่อนที่ของอนุภาคในศักย์แบบ 1 มิติ เช่น [[ศักย์แบบขั้นบันได]] [[กำแพงศักย์]] [[บ่อศักย์แบบอนันต์]] [[บ่อศักย์แบบลึกจำกัด]] เป็นต้น ซึ่งจะพบว่ามีบางส่วนที่แตกต่างจากการใช้วิธีการทาง[[กลศาสตร์ดั้งเดิม]]แก้ปัญหาอย่างชัดเจน
ซึ่งสมการชเรอดิงเงอร์จะใช้ในการแก้ปัญหาการเคลื่อนที่ของอนุภาคในศักย์แบบ 1 มิติ เช่น [[ศักย์แบบขั้นบันได]] [[กำแพงศักย์]] [[บ่อศักย์แบบอนันต์]] [[บ่อศักย์แบบลึกจำกัด]] เป็นต้น ซึ่งจะพบว่ามีบางส่วนที่แตกต่างจากการใช้วิธีการทาง[[กลศาสตร์ดั้งเดิม]]แก้ปัญหาอย่างชัดเจน


=== สมการชเรอดิงเงอร์ของอะตอมไฮโดรเจน ===
ผลเฉลยของสมการชโรดิงเจอร์ ออร์บิทัลของ[[อะตอมคล้ายไฮโดรเจน]]เป็น[[ไอเกนฟังก์ชัน]]ของตัวดำเนินการโมเมนตัมเชิงมุมของอิเล็กตรอน 1 ตัว ในแกน ''z'' (''L''<sub>z</sub>) ออบิทัลของอะตอมคล้ายไฮโดรเจน(hydrogen-like atom) สามารถหาได้จากเลขควอนตัมหลัก ''n'' เลขควอนตัมโมเมนตัมเชิงมุม ''l'' และเลขควอนตัมแม่เหล็ก m พลังงานเฉพาะของอะตอมมีค่าขึ้นกับค่า ''n'' เท่านั้น เราจึงต้องบวกเลขควอนตัมการหมุน ''m<sub>s</sub>'' = ±½ สำหรับในออร์บิทัลที่มีระดับพลังงานเท่ากันของอะตอมคล้ายไฮโดรเจน ค่า ''n'', ''l'', ''m'' and ''s'' จะมีค่าเฉพาะที่เปลี่ยนไปตามระดับพลังงาน

การวิเคราะห์สมการชโรดิงเจอร์ของอะตอมที่มีอิเล็กตรอนมากกว่าหนึ่งตัวนั้นเป็นไปได้ยาก เนื่องจากมีแรงคูลอมบ์ระหว่างอิเล็กตรอนเข้ามาเกี่ยวข้องกับการคำนวณ เราจึงต้องใช้วิธีเชิงตัวเลข (Numerical method) มาช่วยคำนวณ เพื่อหาฟังก์ชันคลื่นหรือสมบัติทางควอนตัมอื่น ๆ ดังนั้นเราจึงใช้แบบจำลองของอะตอมคล้ายไฮโดรเจนในการแก้ปัญหา

จากกฎของคูลอมบ์ ศักย์ไฟฟ้าเป็นดังสมการ

:<math>V(r) = -\frac{1}{4 \pi \epsilon_0} \frac{Ze^2}{r}</math>

เมื่อ
* ε<sub>0</sub> คือ ค่าสภาพยอมของสุญญากาศ,
* ''Z'' คือ เลขอะตอม (จำนวนโปรตอนในนิวเคลียส),
* ''e'' คือ ประจุของอิเล็กตรอน,
* ''r'' คือ ระยะห่างระหว่างอิเล็กตรอนและนิวเคลียส

ดังนั้นจะได้สมการคลื่น (ในพิกัดทรงกลม) เป็น

:<math>\psi(r, \theta, \phi) = R_{nl}(r)Y_{lm}(\theta,\phi)\,</math>

โดย <math>Y_{lm}</math> คือ [[ฮาร์มอนิกส์ทรงกลม]]

จะได้สมการชโรดิงเจอร์

:<math>
\left[ - \frac{\hbar^2}{2\mu} \left({1 \over r^2}{\partial \over \partial r}\left(r^2 {\partial R(r)\over \partial r}\right) - {l(l+1)R(r)\over r^2} \right) + V(r)R(r) \right]= E R(r),
</math>

โดย <math>\mu</math> คือ [[มวลลดทอน]]
== อ้างอิง ==
== อ้างอิง ==
{{รายการอ้างอิง}}
{{รายการอ้างอิง}}

รุ่นแก้ไขเมื่อ 21:09, 2 มีนาคม 2561

แอร์วิน ชเรอดิงเงอร์ ผู้คิดค้นสมการชเรอดิงเงอร์

ในวิชากลศาสตร์ควอนตัม สมการชเรอดิงเงอร์ เป็นสมการทางคณิตศาสตร์ที่ใช้อธิบายระบบทางฟิสิกส์ ที่เป็นผลจากปรากฏการณ์ควอนตัม เช่น ทวิภาคของคลื่นและอนุภาค สมการชเรอดิงเงอร์เป็นสมการที่สำคัญในการศึกษาระบบทางกลศาสตร์ควอนตัม ซึ่งแอร์วิน ชเรอดิงเงอร์ (Erwin Schrödinger) นักฟิสิกส์ชาวออสเตรีย ได้ค้นพบ "สมการชเรอดิงเงอร์" ในปี พ.ศ. 2468 และถูกตีพิมพ์ในปีต่อมา จากการค้นพบสมการชเรอดิงเงอร์ ทำให้แอร์วิน ชเรอดิงเงอร์ได้รับรางวัลโนเบล สาขาฟิสิกส์ ในปี พ.ศ. 2476 สมการนี้เป็นสมการเชิงอนุพันธ์ย่อยหรือที่รู้จักกันว่าสมการคลื่น โดยสามารถแก้สมการชเรอดิงเงอร์เพื่อหาพฤติกรรมการเคลื่อนที่ของคลื่นได้

ในกลศาสตร์ดั้งเดิม กฎการเคลื่อนที่ของนิวตันโดยเฉพาะกฎข้อที่สอง จะสามารถอธิบายการเคลื่อนที่ของอนุภาคโดยแสดงให้เห็นถึงตำแหน่ง ความเร็ว และความเร่งของอนุภาคที่เปลี่ยนแปลงตามเวลา โดยใช้สมการการเคลื่อนที่ในการทำนายการเคลื่อนที่ของอนุภาคในระบบ แต่ในกลศาสตร์ควอนตัม พฤติกรรมของอนุภาคจะถูกอธิบายโดยฟังก์ชันคลื่น ดังนั้นเราจึงสามารถแก้สมการชเรอดิงเงอร์เพื่อหาผลเฉลยออกมาเป็นฟังก์ชันคลื่น โดยสมการชเรอดิงเงอร์นี้เป็นการอธิบายธรรมชาติในระดับจุลภาค[1]

สมการชเรอดิงเงอร์แบ่งออกได้เป็นสมการชเรอดิงเงอร์ที่ขึ้นกับเวลา และสมการชเรอดิงเงอร์ที่ไม่ขึ้นกับเวลา

สมการ

สมการชเรอดิงเงอร์ที่ขึ้นกับเวลา

Time-dependent Schrödinger equation (general)

โดยที่

i คือ หน่วยจินตภาพ

ħ คือ ค่าคงตัวของพลังค์แบบลดค่า

สัญลักษณ์ /t แสดงถึง อนุพันธ์ย่อยเทียบกับเวลา t

Ψ (อักษรกรีกพไซ) คือ ฟังก์ชันคลื่นในระบบควอนตัม

r และ t คือ เวกเตอร์บอกตำแหน่งและเวลาตามลำดับ

Ĥ คือ ตัวดำเนินการฮามิลโทเนียน

สมการชเรอดิงเงอร์ที่ไม่ขึ้นกับเวลา

Time-independent Schrödinger equation (general)

สมการนี้เป็นการเขียนให้อยู่ในรูปตัวดำเนินการฮามิลโทเนียน ซึ่งจะเรียกสมการนี้ว่าสมการEigenvalue ที่มีค่าคงตัว E เป็น Eigenvalue และมี Ψ เป็น Eigen function

ซึ่งสมการชเรอดิงเงอร์จะใช้ในการแก้ปัญหาการเคลื่อนที่ของอนุภาคในศักย์แบบ 1 มิติ เช่น ศักย์แบบขั้นบันได กำแพงศักย์ บ่อศักย์แบบอนันต์ บ่อศักย์แบบลึกจำกัด เป็นต้น ซึ่งจะพบว่ามีบางส่วนที่แตกต่างจากการใช้วิธีการทางกลศาสตร์ดั้งเดิมแก้ปัญหาอย่างชัดเจน

สมการชเรอดิงเงอร์ของอะตอมไฮโดรเจน

ผลเฉลยของสมการชโรดิงเจอร์ ออร์บิทัลของอะตอมคล้ายไฮโดรเจนเป็นไอเกนฟังก์ชันของตัวดำเนินการโมเมนตัมเชิงมุมของอิเล็กตรอน 1 ตัว ในแกน z (Lz) ออบิทัลของอะตอมคล้ายไฮโดรเจน(hydrogen-like atom) สามารถหาได้จากเลขควอนตัมหลัก n เลขควอนตัมโมเมนตัมเชิงมุม l และเลขควอนตัมแม่เหล็ก m พลังงานเฉพาะของอะตอมมีค่าขึ้นกับค่า n เท่านั้น เราจึงต้องบวกเลขควอนตัมการหมุน ms = ±½ สำหรับในออร์บิทัลที่มีระดับพลังงานเท่ากันของอะตอมคล้ายไฮโดรเจน ค่า n, l, m and s จะมีค่าเฉพาะที่เปลี่ยนไปตามระดับพลังงาน

การวิเคราะห์สมการชโรดิงเจอร์ของอะตอมที่มีอิเล็กตรอนมากกว่าหนึ่งตัวนั้นเป็นไปได้ยาก เนื่องจากมีแรงคูลอมบ์ระหว่างอิเล็กตรอนเข้ามาเกี่ยวข้องกับการคำนวณ เราจึงต้องใช้วิธีเชิงตัวเลข (Numerical method) มาช่วยคำนวณ เพื่อหาฟังก์ชันคลื่นหรือสมบัติทางควอนตัมอื่น ๆ ดังนั้นเราจึงใช้แบบจำลองของอะตอมคล้ายไฮโดรเจนในการแก้ปัญหา

จากกฎของคูลอมบ์ ศักย์ไฟฟ้าเป็นดังสมการ

เมื่อ

  • ε0 คือ ค่าสภาพยอมของสุญญากาศ,
  • Z คือ เลขอะตอม (จำนวนโปรตอนในนิวเคลียส),
  • e คือ ประจุของอิเล็กตรอน,
  • r คือ ระยะห่างระหว่างอิเล็กตรอนและนิวเคลียส

ดังนั้นจะได้สมการคลื่น (ในพิกัดทรงกลม) เป็น

โดย คือ ฮาร์มอนิกส์ทรงกลม

จะได้สมการชโรดิงเจอร์

โดย คือ มวลลดทอน

อ้างอิง

  1. จิรศักดิ์ วงศ์เอกบุตร. (2557). กลศาสตร์ควอนตัมเบื้องต้น. มหาวิทยาลัยเกษตรศาสตร์