ผลต่างระหว่างรุ่นของ "ไฟฟ้า"

จากวิกิพีเดีย สารานุกรมเสรี
เนื้อหาที่ลบ เนื้อหาที่เพิ่ม
Roonie.02 (คุย | ส่วนร่วม)
Roonie.02 (คุย | ส่วนร่วม)
บรรทัด 236: บรรทัด 236:


=== กระแสไฟฟ้า ===
=== กระแสไฟฟ้า ===
บทความหลัก: [[กระแสไฟฟ้า]]
การเคลื่อนที่ของประจุไฟฟ้าเราเรียกว่า [[กระแสไฟฟ้า]] ความเข้มของมันเราวัดในหน่วย[[แอมแปร์]] กระแสไฟฟ้าสามารถเกิดขึ้นได้แม้ประจุเพียงเล็กน้อย ซึ่งประจุที่ว่านั้นโดยทั่วไปจะหมายถึง[[อิเล็กตรอน]] แต่ประจุที่ที่เคลื่อนที่ร่วมกันนั้นเรียกว่ากระแส


การเคลื่อนที่ของประจุไฟฟ้าเราเรียกว่า[[กระแสไฟฟ้า]] ความเข้มของมันเราวัดได้ในหน่วย[[แอมแปร์]] กระแสไฟฟ้าสามารถประกอบด้วยการเคลื่อนที่ของอนุภาคใด ที่มีประจุ โดยทั่วไปส่วนใหญ่อนุภาคเหล่านี้จะเป็นอิเล็กตรอน แต่ประจุใด ๆ ที่กำลังเคลื่อนที่ทำให้เกิดกระแส
มีการกำหนดแบบแผนการทิศทางของกระแสให้ประจุบวกเคลื่อนที่ หรือมีการเคลื่อนที่ของประจุจากส่วนที่เป็นขั้วบวกไปยังส่วนที่เป็นขั้วลบในวงจรไฟฟ้าอย่างชัดเจน การกำหนดแบบแผนทิศทางของกระแสไฟฟ้าดังกล่าวเรียกว่า '''กระแสสมมติ''' การเคลื่อนที่ของประจุลบในวงจรไฟฟ้าเรียกว่า '''กระแสอิเล็กตรอน''' คือหนึ่งในรูปแบบที่นิยมในการกำหนดทิศทางของกระแส ดังนั้นจะเห็นได้ว่าทิศทางของกระแสสมมติ (ดูการเคลื่อนที่ของประจุบวก) จะเคลื่อนที่ตรงข้ามกับทิศทางของกระแสอิเล็กตรอน (ดูการเคลื่อนที่ของประจุลบ) อย่างไรก็ตามขึ้นอยู่ที่การใช้งาน กระแสอิเล็กตรอนใช้ในการรวมประจุให้ไปในทิศทางเดียวกัน ส่วนกระแสสมมติก็ใช้วิเคราะห์ได้ง่ายและกว้าง


จากธรรมเนียมปฏิบัติในอดีต กระแสบวกถูกกำหนดให้มีทิศทางเดียวกันกับการไหลเนื่องจากประจุบวกที่มันมีอยู่ หรือมีการไหลส่วนของวงจรที่เป็นบวกมากที่สุดไปยังส่วนที่เป็นลบมากที่สุด การกำหนดกระแสในลักษณะนี้เรียกว่า[[กระแสตามธรรมเนียมปฏิบัติ]] การเคลื่อนที่ของอิเล็กตรอนที่มีประจุลบไปรอบ[[วงจรไฟฟ้า]] หนึ่งในรูปแบบของกระแสที่คุ้นเคยที่สุดจึงถือว่าเป็นบวกในทิศทาง ''ตรงกันข้าม'' กับทิศทางของอิเล็กตรอน<ref>
ในการเกิดกระแสไฟฟ้าจะผ่านวัสดุที่เรียกว่า[[ตัวนำไฟฟ้า]] มีวัสดุธรรมชาติมากมายที่สามารถก่อให้เกิดประจุได้ ตัวอย่างของกระแสไฟฟ้าที่อยู่ในวัตถุตัวนำก็คือ อิเล็กตรอนที่ไหลอยู่ในตัวนำไฟฟ้า อาทิโลหะ หรือการ[[อิเล็กโตรไลซิส]](คือการที่ไอออนไหลอยู่ในของเหลว) โดยปกติแล้วมันจะไหลช้ามากๆ บางทีเฉลี่ยเป็นแค่[[ความเร็วลอยเลื่อน]]เท่านั้น คิดเป็นเพียงเศษของมิลลิเมตรต่อวินาทีเลยทีเดียว [[สนามไฟฟ้า]]สามารถขับเคลื่อนด้วยตัวของมันเอง ด้วยการแพร่ไปด้วยความเร็วใกล้[[อัตราเร็วแสง|ความเร็วแสง]] ทำให้สัญญาณอิเล็กตรอนสามารถส่งผ่านไปยังสายตัวนำอย่างรวดเร็ว
{{Citation
| first = Robert | last = Ward
| title = Introduction to Electrical Engineering
| publisher = Prentice-Hall
| page = 18
| year = 1960}}
</ref> อย่างไรก็ตาม ขึ้นอยู่กับหลายเงื่อนไข กระแสไฟฟ้าสามารถประกอบด้วยการไหลของอนุภาคในทิศทางใดทิศทางหนึ่ง หรือแม้แต่ทั้งสองทิศทางในเวลาเดียวกัน การไหลตามธรรมเนียมปฏิบัติจากบวกไปลบมีการใช้อย่างกว้างขวางเพื่อทำให้สถานะการณ์นี้ง่ายขึ้น


[[ไฟล์:Lichtbogen 3000 Volt.jpg|thumb|left|สายไฟโลหะสองเส้นทำเป็นรูปตัว V กลับหัว [[ประกายไฟฟ้า]]ส้มขาวสว่างแถบทำให้ตาบอดจะไหลระหว่างปลายทั้งสอง เป็นการสาธิตให้เห็นถึงพลังงานของการไหลของกระแส]]
กระแสไฟฟ้ามีกรณีที่สังเกตเห็นได้ในหลายเหตุการณ์ ตามประวัติศาสตร์นั่นหมายความว่ามันเป็นที่รู้จักมานานแล้ว น้ำสามารถถูกแยกได้โดยกระแสจาก[[โวตาอิก ไพล์]] (แบตเตอรี่ของโวลต้า) ซึ่งค้นพบโดย[[วิลเลี่ยม นิโคลสัน]]กับ[[เซอร์ แอนโธนี คาร์ลิเซิล]]สองนักวิทยาศาสตร์ชาวอังกฤษ เมื่อคริสต์ศตวรรษที่ 1800 โดยกระบวนการอิเล็กโตรไลซิส ในเรื่องของไฟฟ้ากระแสยังมีการกล่าวถึง[[ความต้านทาน]] ซึ่งเกิดจากความร้อน ผลกระทบนี้[[เจมส์ เพรสคอต จูล]]ได้ทำการศึกษามันทางคณิตศาสตร์ในปี [[พ.ศ. 2383]] เรื่องสำคัญที่มีความเกี่ยวข้องกับกระแสเรื่องหนึ่งนั้นถูกค้นพบโดยบังเอิญโดย[[ฮันส์ คริสเทียน เออร์สเตด|ฮันส์ คริสเตียน เออร์สเตด]]ในปี[[พ.ศ. 2363]] เมื่อครั้งที่เขากำลังเตรียมการสอน เขาพบเห็นกระแสในเส้นลวดทำให้เกิดแม่เหล็กขึ้นล้อมรอบ เออร์สเตดจึงค้นพบความสัมพันธ์ระหว่างแม่เหล็กกับไฟฟ้า ซึ่งต่อมาเรียกว่าแม่เหล็กไฟฟ้า


กระบวนการที่ยอมกระแสไฟฟ้าไหลผ่านวัสดุเรียกว่า[[การนำไฟฟ้า]] และธรรมชาติของมันสามารถแปรไปตามธรรมชาติของอนุภาคที่มีประจุและวัสดุที่อนุภาคเหล่านั้นจะไหลผ่าน ตัวอย่างของกระแสไฟฟ้าจะรวมถึงการนำกระแสของโลหะเมื่ออิเล็กตรอนไหลไปใน[[ตัวนำไฟฟ้า|ตัวนำ]]เช่นโลหะ อีกตัวอย่างหนึ่งคือ[[การแยกสลายด้วยไฟฟ้า]]เมื่อ[[ไอออน]] ([[อะตอม]]ที่มีประจุ) ไหลผ่านของเหลวหรือผ่าน[[พลาสมา]]เช่นสปากของไฟฟ้า ในขณะที่อนุภาคเองสามารถเคลื่อนที่ได้อย่างเชื่องช้า บางครั้งด้วย[[ความเร็วลอย]]เฉลี่ยเพียงเศษของมิลิเมตรต่อวินาทีเท่านั้น<ref name=Duffin/>{{rp|17}} [[สนามไฟฟ้า]]ที่ขับพวกมันนั้นตัวมันเองแผ่กระจายที่ความเร็วใกล้กับ[[ความเร็วแสง]] เปิดโอกาสให้สัญญาณไฟฟ้าสามารถผ่านไปได้อย่างรวดเร็วไปตามเส้นลวด<ref>
ในทางวิศวกรรมหรือการใช้งานตามอาคารบ้านเรือน เรามักจะพบเจอกับกระแสไฟฟ้าอยู่บ่อยๆ ไม่ว่าจะเป็น[[ไฟฟ้ากระแสตรง]] (DC) หรือ[[ไฟฟ้ากระแสสลับ]] (AC)อย่าเรียนเลยเชื่อกู
{{Citation
| first = L. | last = Solymar
| title = Lectures on electromagnetic theory
| publisher = Oxford University Press
| page = 140
| year = 1984
| isbn = 0-19-856169-5}}
</ref>

กระแสไฟฟ้าทำให้เกิดผลกระทบที่สังเกตเห็นได้หลายอย่าง ซึ่งตามประวัติศาสตร์ผลกระทบเหล่านั้นเป็นวิธีการเพื่อการรับรู้การปรากฏตัวของมัน ที่ว่าน้ำสามารถถูกแยกสลายได้โดยกระแสจาก[[เซลล์กัลวานี]] ผลกระทบนี้ถูกค้นพบโดย[[วิลเลี่ยม นิโคลสัน]]กับ[[เซอร์ แอนโธนี คาร์ลิเซิล]] สองนักวิทยาศาสตร์ชาวอังกฤษในปีคริสตศักราช 1800 กระบวนการนี้ปัจจุบันเรียกว่า[[การแยกสลายด้วยไฟฟ้า]หรืออิเล็กโตรไลซิส งานของพวกเขาถูกขยายออกไปอย่างมหาศาลโดย[[ไมเคิล ฟาราเดย์]]ในปี 1833 กระแสไฟฟ้าเมื่อไหลผ่าน[[ความต้านทาน]] มันทำให้เกิดความร้อนอยู่ภายใน ผลกระทบนี้[[เจมส์ เพรสคอต จูล]]ได้ทำการศึกษามันทางคณิตศาสตร์ในปี 1840<ref name=Duffin/>{{rp|23–24}} หนึ่งในการคันพบที่เกี่ยวข้องกับกระแสที่สำคัญที่สุดถูกค้นพบโดยบังเอิญโดย[[ฮันส์ คริสเทียน เออร์สเตด]]ในปี 1820 เมื่อครั้งที่เขากำลังเตรียมการสอน เขาพบเห็นกระแสในเส้นลวดไปรบกวนเข็มของเข็มทิศแม่เหล็ก<ref name=berkson>
{{Citation
| first = William | last = Berkson
| title = Fields of Force: The Development of a World View from Faraday to Einstein
| publisher = Routledge
| page = 370
| year = 1974
| isbn = 0-7100-7626-6}} Accounts differ as to whether this was before, during, or after a lecture.</ref> เขาได้ค้นพบ[[ทฤษฎีแม่เหล็กไฟฟ้า]] ซึ่งเป็นปฏิสัมพันธ์พื้นฐานระหว่างแม่เหล็กกับไฟฟ้า ระดับของการปลดปล่อยสนามแม่เหล็กไฟฟ้าที่สร้างขึ้นโดย[[การอาร์กด้วยไฟฟ้า]]จะสูงพอที่จะสร้าง[[การรบกวนจากแม่เหล็กไฟฟ้า]] ซึ่งสามารถก่อให้เกิดอันตรายกับการทำงานของอุปกรณ์ใกล้เคียง<ref>{{cite web | title = Lab Note #105 ''EMI Reduction - Unsuppressed vs. Suppressed'' | publisher = Arc Suppression Technologies | date = April 2011 | url = http://www.arcsuppressiontechnologies.com/arc-suppression-facts/lab-app-notes/| accessdate = March 7, 2012}}</ref>

ในทางวิศวกรรมหรือการใช้งานตามอาคารบ้านเรือน กระแสมักจะถูกอธิบายว่าเป็น[[ไฟฟ้ากระแสตรง]] (DC) หรือ[[ไฟฟ้ากระแสสลับ]] (AC) คำศัพท์เหล่านี้บอกว่ากระแสจะแปรเปลี่ยนตามเวลาได้อย่างไร กระแสตรงอย่างที่ถูกผลิตขึ้นโดย[[แบตเตอรี]]และเป็นที่ต้องการของอุปกรณ์[[อิเล็กทรอนิกส์]]ส่วนใหญ่ จะไหลไปในทิศทางเดียวคือจากขั้วบวกผ่านวงจรภายนอกไปยังขั้วลบ<ref name=bird>
{{citation
| first = John | last = Bird
| title = Electrical and Electronic Principles and Technology, 3rd edition
| publisher = Newnes
| year = 2007
| isbn = 9781417505432}}
</ref>{{rp|11}} ถ้า อย่างที่เกิดขึ้นเป็นส่วนใหญ่ การไหลนี้ถูกนำพาโดยอิเล็กตรอน พวกมันจะต้องเดินทางไปในทิศทางตรงกันข้าม กระแสสลับเป็นกระแสที่ไหลในทิศทางกลับไปกลับมาซ้ำ ๆ กัน; เกือบตลอดเวลาการไหลนี้ใช้รูปแบบของ[[คลื่นไซน์]]<ref name=bird/>{{rp|206–207}} ดังนั้นกระแสสลับจะไหลไปและกลับมาภายในตัวนำโดยปราศจากประจุที่เคลื่อนที่เป็นระยะทางสุทธิใดในช่วงเวลา ค่าของกระแสสลับเฉลี่ยตามเวลาเป็นศูนย์ แต่มันส่งมอบพลังงานในทิศทางแรกก่อน จากนั้นก็ทิศทางย้อนกลับ กระแสสลับได้รับผลกระทบจากคุณสมบัติทางไฟฟ้​​าที่ไม่ถูกรับรู้ภายใต้สภาวะมั่นคงของกระแสตรง เช่น[[อินดักแตนซ์]]และ[[คาปาซิแตนซ์]]<ref name=bird/>{{rp|223–225}} อย่างไรก็ตามคุณสมบัติเหล่านี้อาจมีความสำคัญเมื่อวงจรอยู่ภายใต้สัญญาณไฟกระโชก ({{lang-en|transient}}) เช่นเมื่อถูกป้อนพลังงานไฟฟ้าครั้งแรก


=== สนามไฟฟ้า ===
=== สนามไฟฟ้า ===

รุ่นแก้ไขเมื่อ 16:08, 2 มิถุนายน 2559

ฟ้าผ่าในเมืองตอนกลางคืนที่เกิดซ้ำ ๆ หลายครั้ง ฟ้าผ่าเป็นหนึ่งในผลกระทบที่ดราม่าที่สุดของไฟฟ้า

ไฟฟ้า (กรีก: ήλεκτρον; อังกฤษ: electricity) เป็นชุดของปรากฏการณ์ทางฟิสิกส์ มีที่มาจากภาษากรีกซึ่งในสมัยนั้นหมายถึงผลจากสิ่งที่เกิดขึ้นตามธรรมชาติเนื่องจากการปรากฏตัวและการไหลของประจุไฟฟ้า เช่นฟ้าผ่า, ไฟฟ้าสถิต, การเหนี่ยวนำแม่เหล็กไฟฟ้าและกระแสไฟฟ้า นอกจากนี้ ไฟฟ้ายังทำให้เกิดการผลิตและการรับคลื่นแม่เหล็กไฟฟ้า เช่นคลื่นวิทยุ

พูดถึงไฟฟ้า ประจุจะผลิตสนามแม่เหล็กไฟฟ้าซึ่งจะกระทำกับประจุอื่น ๆ ไฟฟ้าเกิดขึ้นได้เนื่องจากหลายชนิดของฟิสิกซ์ดังต่อไปนี้

ใน วิศวกรรมไฟฟ้า คำว่าไฟฟ้าหมายถึง:

ปรากฏการณ์เกี่ยวกับไฟฟ้าได้มีการศึกษากันมานับตั้งแต่โบราณกาลแต่ความก้าวหน้าในความเข้าใจมางทฤษฎีก็ยังคงช้าอยู่จนกระทั่งคริสตศตวรรษที่ 17 และ 18 แม้ว่าในขณะนั้นการประยุกต์ใช้ไฟฟ้าในทางปฏิบัติจะยังมีน้อยและมันยังไม่ถึงเวลาจนกระทั่งปลายคริสตศตวรรษที่ 19 ที่วิศวกรไฟฟ้าจะสามารถนำมันไปใช้ในงานอุตสาหกรรมและตามบ้านเรือน การขยายตัวอย่างรวดเร็วของเทคโนโลยีไฟฟ้าในช่วงเวลานี้ได้เปลี่ยนแปลงอุตสาหกรรมและสังคม ความหลากหลายที่เกินธรรมดาของไฟฟ้าทำให้มันสามารถถูกนำไปใช้ในงานที่เกือบจะไร้ขัดจำกัดซึ่งรวมถึงการขนส่ง การให้ความร้อน แสงสว่าง การสื่อสาร และคอมพิวเตอร์ พลังงานไฟฟ้าปัจจุบันได้เป็นกระดูกสันหลังของสังคมอุตสาหกรรมที่ทันสมัย[1]

ประวัติ

เธลีสแห่งมิเลทัส ชายที่มีหนวดและผมยุ่ง เขาเป็นนักค้นคว้าทางด้านไฟฟ้าที่รู้กันว่าเป็นคนเก่าแก่ที่สุด

บทความหลัก: ประวัติของทฤษฎีแม่เหล็กไฟฟ้า, ประวัติของวิศวกรรมไฟฟ้า

นานก่อนที่จะมีความรู้ใด ๆ ด้านไฟฟ้า ผู้คนได้ตระหนักถึงการกระตุกของปลาไฟฟ้า ในสมัยอียิปต์โบราณพบข้อความที่จารึกในช่วงประมาณ 2750 ปีก่อนคริสตศักราช ได้พูดถึงปลาเหล่านี้ว่าเป็น "สายฟ้าแห่งแม่น้ำไนล์" และพรรณนาว่าพวกมันเป็น "ผู้พิทักษ์" ของปลาอื่น ๆ ทั้งมวล ปลาไฟฟ้ายังถูกบันทึกอีกครั้งในช่วงพันปีต่อมาโดยกรีกโบราณ, ชาวโรมันและนักธรรมชาติวิทยาชาวอาหรับและแพทย์มุสลิม[2] นักเขียนโบราณหลายคน เช่น Pliny the Elder และ Scribonius Largus ได้พิสูจน์ให้เห็นถึงอาการชาจากไฟฟ้าช็อคที่เกิดจากปลาดุกไฟฟ้าและปลากระเบนไฟฟ้า และยังรู้อีกว่าการช็อคเช่นนั้น สามารถเดินทางไปตามวัตถุที่นำไฟฟ้า[3] ผู้ป่วยที่ต้องทนทุกข์ทรมาณจากการเจ็บป่วยเช่นเป็นโรคเกาต์หรือปวดหัว จะถูกส่งไปสัมผัสกับปลาไฟฟ้าซึ่งหวังว่าการกระตุกอย่างมีพลังอาจรักษาพวกเขาได้[4] เป็นไปได้ว่าวิธีการที่เก่าแก่ที่สุดและใกล้ที่สุดในการค้นพบตัวตนของฟ้าผ่าและไฟฟ้าจากแหล่งที่มาอื่น ๆ ควรที่จะอุทิศให้กับชาวอาหรับ ผู้ที่ก่อนศตวรรษที่ 15 พวกเขามีคำภาษาอารบิกสำหรับฟ้าผ่าว่า raad ที่หมายถึงปลากระเบนไฟฟ้า[5]

วัฒนธรรมโบราณรอบ ๆ ทะเลเมดิเตอร์เรเนียนจะรู้จักวัตถุบางอย่าง เช่นแท่งอำพัน เมื่อนำมาขัดถูกับขนแมว มันสามารถดึงดูดวัตถุที่เบาเช่นขนนก เธลีสแห่งมิเลทัสได้ทำข้อสังเกตุหลายอย่างเกี่ยวกับไฟฟ้าสถิตราว 600 ปีก่อนคริสตกาล จากข้อสังเกตุเหล่านั้นเขาเชื่อว่าการเสียดสีทำให้เกิดแม่เหล็กบนอัมพัน ซึ่งต่างกับสินแร่อื่นเช่นแมกนีไทต์ที่ไม่ต้องขัดถู [6][7] เธลีสผิดที่เชื่อว่าการดึงดูดเกิดจากแม่เหล็ก แต่วิทยาศาสตร์ต่อมาจะพิสูจน์ความเชื่อมโยงระหว่างแม่เหล็กและไฟฟ้า ตามทฤษฎีที่ขัดแย้งกัน ชาวพาเทียนอาจมีความรู้เกี่ยวกับการชุบด้วยไฟฟ้ามาก่อน เมื่ออ้างถึงการค้นพบแบตเตอรี่แบกแดดที่คล้ายคลึงกับเซลล์กัลวานีในปี ค.ศ. 1936 แม้จะยังไม่แน่นอนว่าสิ่งประดิษฐ์ที่ได้จะเป็นไฟฟ้าในธรรมชาติหรือไม่[8]

เบนจามิน แฟรงคลินได้ทำการทดลองอย่างกว้างขวางเกี่ยวกับไฟฟ้าในคริสตศตวรรษที่ 18 ตามบันทึกของ โจเซฟ พรีสท์ลี่ (1767) ประวัติและสถานะปัจจุบันของไฟฟ้า ที่แฟรงคลินมีหนังสือโต้ตอบอย่างกว้างขวางกับเขาด้วย

ไฟฟ้ายังเป็นเรื่องไม่มากไปกว่าความอยากรู้อยากเห็นทางปัญญาเป็นเวลานับพันปีจนกระทั่งทศวรรษที่ 1600 เมื่อวิลเลียม กิลเบิร์ตนักวิทยาศาสตร์ชาวอังกฤษได้ทำการศึกษาเรื่องแม่เหล็กและไฟฟ้าอย่างตั้งใจ เขาได้แยกความแตกต่างของผลกระทบจากแร่แแม่เหล็กออกจากไฟฟ้าสถิตที่เกิดจากการขัดสีแท่งอำพัน[6] เขาบัญญัติศัพท์คำภาษาละตินใหม่ว่า "electricus" ("ของอำพัน" หรือ "เหมือนอัมพัน" จาก ἤλεκτρον หรือ elektron คำกรีกโบราณสำหรับ "อัมพัน") เพื่อหมายถึงคุณสมบัติในการดึงดูดวัตถุเล็กๆหลังการขัดสี[9] การผสมกันนี้ทำให้เกิดคำในภาษาอังกฤษว่า "electric" และ "electricity" ซึ่งปรากฏขึ้นครั้งแรกในสิ่งพิมพ์ Pseudodoxia Epidemica ของโธมัส บราวน์ เมื่อปี ค.ศ. 1646[10]

ไมเคิล ฟาราเดย์ การค้นพบของเขาก่อตัวเป็นรากฐานของเทคโนโลยีมอเตอร์ไฟฟ้า

ผลงานชิ้นต่อมาดำเนินการโดยอ็อตโต ฟอน เกียริก, โรเบิร์ต บอยล์, สตีเฟน เกรย์ และชาร์ล เอฟ. ดู เฟย์ ในคริสตศตวรรษที่ 18 เบนจามิน แฟรงคลิน ทำการวิจัยเรื่องไฟฟ้าอย่างกว้างขวาง เขาขายทรัพย์สมบัติของเขาที่มีเพื่อเป็นทุนวิจัยของเขา ในเดือนมิถุนายน ค.ศ. 1752 เขามีชื่อเสียงที่ได้ติดลูกกุญแจโลหะไว้ที่หางของเชือกว่าวที่เปียกชื้น แล้วปล่อยลอยขึ้นฟ้าในวันที่มีลมพายุรุนแรง[11] ประกายไฟที่กระโดดอย่างต่อเนื่องจากลูกกุญแจไปยังหลังมือของเขาได้แสดงให้เห็นว่าฟ้าผ่าคือไฟฟ้าในธรรมชาติอย่างแท้จริง[12] เขายังได้อธิบายถึงพฤฒิกรรมที่ผิดปกติและขัดแย้งกันเองที่ปรากฏอีกด้วย[13] เกี่ยวกับโถเลย์เดนที่ใช้เป็นอุปกรณ์สำหรับเก็บประจุไฟฟ้าปริมาณมากในรูปของไฟฟ้าที่ประกอบด้วยทั้งประจุบวกและประจุลบ

ในปีค.ศ. 1791 ลุยจิ กัลวานีได้ตีพิมพ์การค้นพบแม่เหล็กไฟฟ้าชีวภาพของเขาที่แสดงให้เห็นว่าไฟฟ้าเป็นตัวกลางที่ผ่านสัญญาณจากเซลล์ประสาทไปสู่กล้ามเนื้อ[14] แบตเตอรี่ของอาเลสซานโดร โวลตา หรือเซลล์ซ้อนของโวลตาในปีทศวรรษที่ 1800 ที่ทำจากชั้นที่สลับซ้อนกันของสังกะสีและทองแดง เป็นแหล่งจ่ายพลังงานไฟฟ้าที่เชื่อถือได้ให้กับเหล่านักวิทยาศาสตร์มากกว่าเครื่องจักรไฟฟ้าสถิต (อังกฤษ: Electrostatic machine) ที่ใช้อยู่ก่อนหน้านี้ [14] ที่เคยใช้กันมาก่อนหน้านี้ การยอมรับในทฤษฎีแม่เหล็กไฟฟ้าว่าเป็นความเป็นหนึ่งเดียวของปรากฏการณ์ไฟฟ้าและแม่เหล็กเป็นเพราะ ฮันส์ คริสเทียน เออสเตดและอังเดร มารี แอมแปร์ในปี 1819-1820, ไมเคิล ฟาราเดย์ได้ประดิษฐ์มอเตอร์ไฟฟ้าในปีค.ศ. 1821 และจอร์จ ไซมอน โอห์มได้ใช้คณิตศาสตร์วิเคราะห์วงจรไฟฟ้าในปีค.ศ. 1827[14] ไฟฟ้าและแม่เหล็ก (และแสงสว่าง) ถูกเชื่อมกันโดยนิยามโดยเจมส์ เคริก แมกซเวลล์ โดยเฉพาะอย่างยิ่งใน "บนเส้นกายภาพของแรง" ของเขาในปี 1861 และปี 1862[15]

ในขณะที่ตอนต้นศตววรษที่ 19 ได้เห็นความเจริญรุดหน้าด้านวิทยาศาสตร์ของไฟฟ้าอย่างรวดเร็ว แต่ตอนปลายศตววรษที่ 19 จะเห็นความก้าวหน้าด้านวิศวกรรมไฟฟ้าอย่างมหาศาล ผ่านทางคนเช่นอเล็กซานเดอร์ เกรแฮม เบลล์, อ็อตโต บลาธี, โทมัส อัลวา เอดิสัน, Galileo Ferraris, Oliver Heaviside, Ányos Jedlik, วิลเลียม ทอมสัน บารอนเคลวินที่ 1, ชาลส์ แอลเกอร์นอน พาร์ซันส์, เวอร์เนอร์ ฟอน ซีเมนส์, โจเซฟ สวอน, นิโคลา เทสลา and จอร์จ เวสติงเฮาส์ ไฟฟ้าได้ปลี่ยนทิศทางจากความอยากรู้อยากเห็นทางวิทยาศาสตร์มาเป็นเครื่องมือที่สำคัญสำหรับชีวิตสมัยใหม่ มันกลายเป็นแรงขับเคลื่อนของการปฏิวัติอุตสาหกรรมครั้งที่สอง[16]

ในปี 1887 ไฮน์ริช เฮิร์ตซ์[17]: 843–844 [18] ค้นพบว่าขั้วไฟฟ้าที่เรืองแสงด้วยรังสีอุลตร้าไวโอเลตจะสร้างประกายไฟฟ้าได้ง่ายมาก ในปี 1905 อัลเบิรต ไอน์สไตน์ได้ตีพิมพ์เอกสารที่อธิบายข้อมูลการทดลองจากผลกระทบโฟโตอิเล็กตริกเมื่อการเป็นผลลัพท์ของพลังงานแสงที่กำลังถูกนำส่งในแพกเกตที่แปลงเป็นปริมาณที่ไม่ต่อเนื่อง เป็นการใส่พลังงานให้กับอิเล็กตรอน การค้นพบนี้นำไปสู่การปฏิวัติควอนตัม ไอน์สไตน์ได้รับรางวัลโนเบลสาขาฟิสิกส์ในปี 1921 สำหรับ "การค้นพบกฎของผลกระทบโฟโตอิเล็กตริก"[19] ผลกระทบโฟโตอิเล็กตริกยังถูกใช้ในโฟโตเซลล์อย่างที่สามารถพบได้ในเซลล์แสงอาทิตย์อีกด้วยและเซลล์นี้มักจะถูกใช้ในการผลิตพลังงานไฟฟ้าเพื่อการพานิชย์

อุปกรณ์โซลิดสเตตตัวแรกเป็น "ตัวตรวจจับแบบหนวดแมว" มันถูกใช้เป็นครั้งแรกในทศวรรษที่ 1900 ในเครื่องรับวิทยุ ลวดคล้ายหนวดแมวจะถูกวางเบา ๆ ในการสัมผัสกับผลึกของแข็ง (เช่นผลึกเจอร์เมเนียม) เพื่อที่จะตรวจจับสัญญาณวิทยุจากผลกระทบจุดสัมผัสที่รอยต่อ (อังกฤษ: contact junction effect)[20] ในชิ้นส่วนโซลิดสเตต กระแสจะถูกกักขังอยู่ในชิ้นส่วนที่เป็นของแข็งและสารประกอบที่ออกแบบมาโดยเฉพาะเพื่อสวิตช์และขยายมัน การไหลของกระแสสามารถเข้าใจได้ในสองรูปแบบ: แบบแรกเป็นอิเล็กตรอนที่มีประจุลบ และแบบที่สองเป็นพร่องอิเล็กตรอนที่มีประจุบวกที่เรียกว่าโฮล ประจุและโฮลเหล่านี้สามารถเข้าใจได้ในแง่ของควอนตัมฟิสิกส์ วัสดุที่ใช้สร้างส่วนใหญ่มักจะเป็นสารกึ่งตัวนำที่เป็นผลึก[21][22]

อุปกรณ์โซลิดสเตตได้เป็นตัวของตัวเองด้วยการประดิษฐ์ทรานซิสเตอร์ในปี 1947 อุปกรณ์โซลิดสเตตที่พบบ่อยได้แก่ทรานซิสเตอร์, ชิปไมโครโปรเซสเซอร์และ RAM ชนิดพิเศษของแรมที่เรียกว่าแฟลชแรมถูกใช้ใน USB แฟลชไดรฟ์ และเมื่อเร็ว ๆ นี้โซลิดสเตตไดรฟ์ได้เข้ามาแทนที่จานแม่เหล็กฮาร์ดดิสก์ไดรฟ์แบบหมุนด้วยกลไก อุปกรณ์โซลิดสเตตได้กลายเป็นแพร่หลายในทศวรรษที่ 1950 และ 1960 ในช่วงการเปลี่ยนผ่านจากหลอดสูญญากาศไปเป็นไดโอดสารกึ่งตัวนำ, ทรานซิสเตอร์, วงจรรวม (IC) และไดโอดเปล่งแสง (LED)

แนวคิด

ประจุไฟฟ้า

บทความหลัก: ประจุไฟฟ้า

ดูเพิ่มเติม: อิเล็กตรอน, โปรตอน, ไอออน

เครื่องตรวจวัดไฟฟ้าสถิตแบบแผ่นทองมีลักษณะเป็นโดมแก้วใสมีหนึ่งขั้วไฟฟ้าภายนอกที่ต่อผ่านแก้วไปยังแผ่นทองคำเปลวหนึ่งคู่ แท่งที่มีประจุเมื่อแตะกับขั้วไฟฟ้าภายนอกจะทำให้แผ่นทองผลักกันและกัน

การปรากฏตัวของประจุก่อให้เกิดแรงไฟฟ้​​าสถิต นั่นคือประจุจะออกแรงอย่างหนึ่งต่อกัน ผลกระทบเป็นที่รู้จัก แต่ไม่เข้าใจ ในสมัย​​โบราณ[17]: 457  ลูกกลมน้ำหนักเบาที่ห้อยลงมาด้วยเชือกสามารถสร้างประจุขึ้นบนตัวมันได้โดยการสัมผัสกับมันโดยใช้แท่งแก้วที่ตัวแท่งแก้วเองได้ถูกสร้างประจุโดยการถูกับผ้า ถ้าลูกกลมที่คล้ายกันอีกลูกหนึ่งถูกสร้างประจุโดยแท่งแก้วอันเดียวกัน ลูกกลมทั้งสองจะผลักกัน นั่นคือประจุจะออกแรงที่บังคับให้ลูกกลมทั้งสองแยกออกจากกัน สองลูกกลมที่ถูกสร้างประจุด้วยแท่งอัมพันที่ผ่านการขัดถูก็ผลักกันเช่นกัน แต่ถ้าลูกหนึ่งถูกประจุด้วยแท่งแก้วและอีกลูกกลมหนึ่งด้วยแท่งอำพัน จะพบว่าลูกกลมทั้งสองจะดึงดูดกัน ปรากฏการณ์เหล่านี้ถูกตรวจสอบในช่วงปลายศตวรรษที่สิบแปดโดยคูลอมบ์ ที่สรุปว่าประจุจะแสดงตัวในสองรูปที่หักล้างกัน การค้นพบนี้ได้นำไปสู่วลีที่รู้จักกันดี ประจุเหมือนกันผลักกันและประจุต่างกันดึงดูดกัน[17]

แรงจะกระทำบนตัวอนุภาคที่มีประจุเอง ดังนั้นประจุมีแนวโน้มที่จะแพร่กระจายตัวเองอย่างสม่ำเสมอเท่าที่เป็นไปได้ทั่วพื้นผิวนำกระแส ขนาดของแรงแม่เหล็กไฟฟ้าไม่ว่าจะเป็นแบบดึงดูดหรือแบบผลักจะถูกกำหนดโดยกฎของคูลอมบ์, ซึ่งเชื่อมโยงแรงกับผลิตภัณฑ์ของประจุและมีความสัมพันธ์แบบผกผันกำลังสอง (อังกฤษ: inverse-square) กับระยะทางระหว่างจุดศูนย์กลางของทั้งสองลูกกลม[23][24]:35 แรงแม่เหล็กไฟฟ้ามีความแรงมาก ความแรงเป็นรองก็แต่กับอันตรกิริยาอย่างเข้ม[25] แต่ไม่เหมือนแรงนั้นที่มันดำเนินการไปทั่วทุกระยะทาง[26] ในการเปรียบเทียบกับแรงโน้มถ่วงที่อ่อนกว่ามาก แรงแม่เหล็กไฟฟ้าที่ผลักอิเล็กตรอนสองตัวให้แยกจากกันจะเป็น 1042 เท่าของแรงดึงดูดจากแรงโน้มถ่วงที่ดึงพวกมันเข้ามารวมกัน[27]


การศึกษาได้แสดงให้เห็นว่าต้นกำเนิดของประจุไฟฟ้ามาจากบางชนิดของอนุภาคย่อยของอะตอม ที่มีคุณสมบัติของประจุไฟฟ้า ประจุไฟฟ้าทำให้เกิดแรงแม่เหล็กไฟฟ้าและพวกมันก็มีปฏิสัมพันธ์กับแรงแม่เหล็กไฟฟ้าด้วย แรงแม่เหล็กไฟฟ้าเป็นหนึ่งในสี่อันตรกิริยาพื้นฐาน ของธรรมชาติ พาหะที่คุ้นเคยมากที่สุดของประจุไฟฟ้าคืออิเล็กตรอนและโปรตอน การทดลองได้แสดงให้เห็นว่าประจุจะเป็นปริมาณอนุรักษ์ (หรือปริมาณคงที่) ค่าหนึ่ง นั่นคือ ประจุสุทธิ (หลังจากถ่ายเทไปมาแล้ว) ภายในระบบโดดเดี่ยวหนึ่งจะมีค่าคงที่เสมอโดยไม่คำนึงถึงการเปลี่ยนแปลงใด ๆ ที่เกิดขึ้นภายในระบบนั้น[28] ภายในระบบ ประจุอาจถูกโอนย้ายระหว่างระบบย่อยด้วยกัน อาจจะโดยการสัมผัสโดยตรงหรือโดยการวิ่งผ่านไปตามวัตถุตัวนำเช่นสายลวด[24]: 2–5  คำศัพท์อย่างไม่เป็นทางการของไฟฟ้าสถิตจะหมายความถึงการปรากฏตัวของประจุเป็นสุทธิ (หรือ 'ไม่สมดุลย์') บนร่างกายหนึ่งปกติจะเกิดขึ้นเมื่อวัตถุที่ไม่เหมือนกันขัดถูกัน ประจุจะถูกถ่ายเทจากวัตถุหนึ่งไปยังอีกวัตถุหนึ่ง

ประจุบนอิเล็กตรอนและโปรตอนจะมีเครื่องหมายตรงกันข้ามกัน ดังนั้นจำนวนของประจุอาจจะแสดงเครื่องหมายเป็นได้ทั้งบวกหรือลบ โดยธรรมเนียมปฏิบัติ ประจุที่ถูกนำพาโดยอิเล็กตรอนจะถือว่าเป็นลบ และนำพาโดยโปรตอนจะเป็นบวก เป็นธรรมเนียมที่มีต้นกำเนิดมาจากงานของเบนจามิน แฟรงคลิน[29] จำนวนของประจุมักจะได้รับสัญลักษณ์เป็น Q และมีค่าเป็นคูลอมบ์[30] อิเล็กตรอนแต่ละตัวจะนำพาประจุจำนวนเดียวกันคือประมาณ −1.6022×10−19 คูลอมบ์ โปรตอนจะมีประจุที่มีค่าเท่ากันแต่เครื่องหมายตรงกันข้าม ดังนั้นจึงเท่ากับ +1.6022×10−19 คูลอมบ์ ประจุไม่ได้อยู่แค่ในสสารเท่านั้น แต่ยังอยู่ในปฏิสสารอีกด้วย แต่ละปฏิอนุภาคจะแบกประจุที่เท่ากันและตรงข้ามกันกับอนุภาคที่สอดคล้องกัน[31]

ประจุสามารถวัดได้หลายวิธี เครื่องมือวัดยุคต้นก็คือเครื่องตรวจวัดไฟฟ้าสถิตแบบแผ่นทอง ซึ่งแม้ว่ายังคงใช้อยู่ในห้องเรียนเพื่อการสาธิต มันได้ถูกแทนที่โดยอิเล็กโทรมิเตอร์แบบอิเล็กทรอนิกส์[24]: 2–5 

กระแสไฟฟ้า

บทความหลัก: กระแสไฟฟ้า

การเคลื่อนที่ของประจุไฟฟ้าเราเรียกว่ากระแสไฟฟ้า ความเข้มของมันเราวัดได้ในหน่วยแอมแปร์ กระแสไฟฟ้าสามารถประกอบด้วยการเคลื่อนที่ของอนุภาคใด ๆ ที่มีประจุ โดยทั่วไปส่วนใหญ่อนุภาคเหล่านี้จะเป็นอิเล็กตรอน แต่ประจุใด ๆ ที่กำลังเคลื่อนที่ทำให้เกิดกระแส

จากธรรมเนียมปฏิบัติในอดีต กระแสบวกถูกกำหนดให้มีทิศทางเดียวกันกับการไหลเนื่องจากประจุบวกที่มันมีอยู่ หรือมีการไหลส่วนของวงจรที่เป็นบวกมากที่สุดไปยังส่วนที่เป็นลบมากที่สุด การกำหนดกระแสในลักษณะนี้เรียกว่ากระแสตามธรรมเนียมปฏิบัติ การเคลื่อนที่ของอิเล็กตรอนที่มีประจุลบไปรอบวงจรไฟฟ้า หนึ่งในรูปแบบของกระแสที่คุ้นเคยที่สุดจึงถือว่าเป็นบวกในทิศทาง ตรงกันข้าม กับทิศทางของอิเล็กตรอน[32] อย่างไรก็ตาม ขึ้นอยู่กับหลายเงื่อนไข กระแสไฟฟ้าสามารถประกอบด้วยการไหลของอนุภาคในทิศทางใดทิศทางหนึ่ง หรือแม้แต่ทั้งสองทิศทางในเวลาเดียวกัน การไหลตามธรรมเนียมปฏิบัติจากบวกไปลบมีการใช้อย่างกว้างขวางเพื่อทำให้สถานะการณ์นี้ง่ายขึ้น

สายไฟโลหะสองเส้นทำเป็นรูปตัว V กลับหัว ประกายไฟฟ้าส้มขาวสว่างแถบทำให้ตาบอดจะไหลระหว่างปลายทั้งสอง เป็นการสาธิตให้เห็นถึงพลังงานของการไหลของกระแส

กระบวนการที่ยอมกระแสไฟฟ้าไหลผ่านวัสดุเรียกว่าการนำไฟฟ้า และธรรมชาติของมันสามารถแปรไปตามธรรมชาติของอนุภาคที่มีประจุและวัสดุที่อนุภาคเหล่านั้นจะไหลผ่าน ตัวอย่างของกระแสไฟฟ้าจะรวมถึงการนำกระแสของโลหะเมื่ออิเล็กตรอนไหลไปในตัวนำเช่นโลหะ อีกตัวอย่างหนึ่งคือการแยกสลายด้วยไฟฟ้าเมื่อไอออน (อะตอมที่มีประจุ) ไหลผ่านของเหลวหรือผ่านพลาสมาเช่นสปากของไฟฟ้า ในขณะที่อนุภาคเองสามารถเคลื่อนที่ได้อย่างเชื่องช้า บางครั้งด้วยความเร็วลอยเฉลี่ยเพียงเศษของมิลิเมตรต่อวินาทีเท่านั้น[24]: 17  สนามไฟฟ้าที่ขับพวกมันนั้นตัวมันเองแผ่กระจายที่ความเร็วใกล้กับความเร็วแสง เปิดโอกาสให้สัญญาณไฟฟ้าสามารถผ่านไปได้อย่างรวดเร็วไปตามเส้นลวด[33]

กระแสไฟฟ้าทำให้เกิดผลกระทบที่สังเกตเห็นได้หลายอย่าง ซึ่งตามประวัติศาสตร์ผลกระทบเหล่านั้นเป็นวิธีการเพื่อการรับรู้การปรากฏตัวของมัน ที่ว่าน้ำสามารถถูกแยกสลายได้โดยกระแสจากเซลล์กัลวานี ผลกระทบนี้ถูกค้นพบโดยวิลเลี่ยม นิโคลสันกับเซอร์ แอนโธนี คาร์ลิเซิล สองนักวิทยาศาสตร์ชาวอังกฤษในปีคริสตศักราช 1800 กระบวนการนี้ปัจจุบันเรียกว่า[[การแยกสลายด้วยไฟฟ้า]หรืออิเล็กโตรไลซิส งานของพวกเขาถูกขยายออกไปอย่างมหาศาลโดยไมเคิล ฟาราเดย์ในปี 1833 กระแสไฟฟ้าเมื่อไหลผ่านความต้านทาน มันทำให้เกิดความร้อนอยู่ภายใน ผลกระทบนี้เจมส์ เพรสคอต จูลได้ทำการศึกษามันทางคณิตศาสตร์ในปี 1840[24]: 23–24  หนึ่งในการคันพบที่เกี่ยวข้องกับกระแสที่สำคัญที่สุดถูกค้นพบโดยบังเอิญโดยฮันส์ คริสเทียน เออร์สเตดในปี 1820 เมื่อครั้งที่เขากำลังเตรียมการสอน เขาพบเห็นกระแสในเส้นลวดไปรบกวนเข็มของเข็มทิศแม่เหล็ก[34] เขาได้ค้นพบทฤษฎีแม่เหล็กไฟฟ้า ซึ่งเป็นปฏิสัมพันธ์พื้นฐานระหว่างแม่เหล็กกับไฟฟ้า ระดับของการปลดปล่อยสนามแม่เหล็กไฟฟ้าที่สร้างขึ้นโดยการอาร์กด้วยไฟฟ้าจะสูงพอที่จะสร้างการรบกวนจากแม่เหล็กไฟฟ้า ซึ่งสามารถก่อให้เกิดอันตรายกับการทำงานของอุปกรณ์ใกล้เคียง[35]

ในทางวิศวกรรมหรือการใช้งานตามอาคารบ้านเรือน กระแสมักจะถูกอธิบายว่าเป็นไฟฟ้ากระแสตรง (DC) หรือไฟฟ้ากระแสสลับ (AC) คำศัพท์เหล่านี้บอกว่ากระแสจะแปรเปลี่ยนตามเวลาได้อย่างไร กระแสตรงอย่างที่ถูกผลิตขึ้นโดยแบตเตอรีและเป็นที่ต้องการของอุปกรณ์อิเล็กทรอนิกส์ส่วนใหญ่ จะไหลไปในทิศทางเดียวคือจากขั้วบวกผ่านวงจรภายนอกไปยังขั้วลบ[36]: 11  ถ้า อย่างที่เกิดขึ้นเป็นส่วนใหญ่ การไหลนี้ถูกนำพาโดยอิเล็กตรอน พวกมันจะต้องเดินทางไปในทิศทางตรงกันข้าม กระแสสลับเป็นกระแสที่ไหลในทิศทางกลับไปกลับมาซ้ำ ๆ กัน; เกือบตลอดเวลาการไหลนี้ใช้รูปแบบของคลื่นไซน์[36]: 206–207  ดังนั้นกระแสสลับจะไหลไปและกลับมาภายในตัวนำโดยปราศจากประจุที่เคลื่อนที่เป็นระยะทางสุทธิใดในช่วงเวลา ค่าของกระแสสลับเฉลี่ยตามเวลาเป็นศูนย์ แต่มันส่งมอบพลังงานในทิศทางแรกก่อน จากนั้นก็ทิศทางย้อนกลับ กระแสสลับได้รับผลกระทบจากคุณสมบัติทางไฟฟ้​​าที่ไม่ถูกรับรู้ภายใต้สภาวะมั่นคงของกระแสตรง เช่นอินดักแตนซ์และคาปาซิแตนซ์[36]: 223–225  อย่างไรก็ตามคุณสมบัติเหล่านี้อาจมีความสำคัญเมื่อวงจรอยู่ภายใต้สัญญาณไฟกระโชก (อังกฤษ: transient) เช่นเมื่อถูกป้อนพลังงานไฟฟ้าครั้งแรก

สนามไฟฟ้า

สนามไฟฟ้า (electric field) คือปริมาณซึ่งใช้บรรยายการที่ประจุไฟฟ้าทำให้เกิดแรงกระทำกับอนุภาคมีประจุภายในบริเวณโดยรอบ หน่วยของสนามไฟฟ้าคือ นิวตันต่อคูลอมบ์ หรือโวลต์ต่อเมตร (มีค่าเท่ากัน) สนามไฟฟ้านั้นประกอบขึ้นจากโฟตอนและมีพลังงานไฟฟ้าเก็บอยู่ ซึ่งขนาดของความหนาแน่นของพลังงานขึ้นกับกำลังสองของความหนาแน่นของสนาม ในกรณีของไฟฟ้าสถิต สนามไฟฟ้าประกอบขึ้นจากการแลกเปลี่ยนโฟตอนเสมือนระหว่างอนุภาคมีประจุ ส่วนในกรณีคลื่นแม่เหล็กไฟฟ้านั้น สนามไฟฟ้าเปลี่ยนแปลงไปพร้อมกับสนามแม่เหล็ก โดยมีการไหลของพลังงานจริง และประกอบขึ้นจากโฟตอนจริง

ศักย์ไฟฟ้า

ศักย์ไฟฟ้า หรือ เรียกว่าศักดาไฟฟ้า คือระดับของพลังงานศักย์ไฟฟ้า ณ จุดใดๆ ในสนามไฟฟ้า จากรูป ศักย์ไฟฟ้าที่ A สูงกว่าศักย์ไฟฟ้าที่ B เพราะว่าพลังงานศักย์ไฟฟ้าที่ A สูงกว่าที่ B ศักย์ไฟฟ้ามี 2 ชนิด คือ ศักย์ไฟฟ้าบวก เป็นศักย์ของจุดที่อยู่ในสนามของประจุบวก และศักย์ไฟฟ้าลบ เป็นศักย์ของจุดที่อยู่ในสนามของประจุลบ ศักย์ไฟฟ้าจะมีค่ามากที่สุดที่ประจุต้นกำเนิดสนาม และมีค่าน้อยลง เมื่อห่างออกไป จนกระทั่งเป็นศูนย์ที่ ระยะอนันต์ (infinity) ในการวัดศักย์ไฟฟ้า ณ จุดใดๆ วัดจากจำนวนพลังงานศักย์ไฟฟ้า ที่เกิดจากการเคลื่อนประจุทดสอบ +1 หน่วย ไปยังจุดนั้น ดังนั้น จึงให้นิยามของศักย์ไฟฟ้าได้ว่า ศักย์ไฟฟ้า ณ จุดใดๆ ในสนามไฟฟ้า คือ พลังงานนี้สิ้นเปลืองไปในการเคลื่อนประจุ ทดสอบ +1 หน่วยประจุจาก infinity มายังจุดนั้น หรือจากจุดนั้นไปยัง infinity ศักย์ไฟฟ้ามีหน่วยเป็นโวลต์

แม่เหล็กไฟฟ้า

แม่เหล็กไฟฟ้า คือ แท่งแม่เหล็กที่เกิดจากอำนาจไฟฟ้า โดยการพันขดลวดที่มีกระแสไฟฟ้าไหลรอบๆแกนแม่เหล็ก

วงจรไฟฟ้า

วงจรไฟฟ้า เป็นการนำเอาสายไฟฟ้าหรือตัวนำไฟฟ้าที่เป็นเส้นทางเดินให้กระแสไฟฟ้าสามารถ ไหลผ่านต่อถึงกันได้นั้นเราเรียกว่า วงจรไฟฟ้า การเคลื่อนที่ของอิเล็กตรอนที่อยู่ภายในวงจรจะเริ่มจากแหล่งจ่ายไฟไปยัง อุปกรณ์ไฟฟ้า ดังการแสดงการต่อวงจรไฟฟ้าเบื้องต้นโดยการต่อแบตเตอรี่ต่อเข้ากับหลอดไฟ หลอดไฟฟ้าสว่างได้เพราะว่ากระแสไฟฟ้าสามารถไหลได้ตลอดทั้งวงจรไฟฟ้าและเมื่อ หลอดไฟฟ้าดับก็เพราะว่ากระแสไฟฟ้าไม่สามารถไหลได้ตลอดทั้งวงจร เนื่องจากสวิตซ์เปิดวงจรไฟฟ้าอยู่นั่นเอง


วงจรอนุกรม

วงจรอนุกรมหมายถึง การนำเอาอุปกรณ์ทางไฟฟ้ามาต่อกันในลักษณะที่ปลายด้านหนึ่งของอุปกรณ์ตัวที่ 1 ต่อเข้ากับอุปกรณ์ตัวที่ 2 จากนั้นนำปลายที่เหลือของอุปกรณ์ตัวที่ 2 ไปต่อกับอุปกรณ์ตัวที่ 3 และจะต่อลักษณะนี้ไปเรื่อยๆ ซึ่งการต่อแบบนี้จะทำให้กระแสไฟฟ้าไหลไปในทิศทางเดียวกระแสไฟฟ้าภายในวงจร อนุกรมจะมีค่าเท่ากันทุกๆจุด ค่าความต้านทานรวมของวงจรอนุกรมนั้นคือการนำเอาค่าความต้านทานทั้งหมดนำมา รวมกันส่วนแรงดันไฟฟ้าในวงจรอนุกรมนั้นแรงดันจะปรากฏคร่อมตัวต้านทานทุกตัว ที่จะมีกระแสไฟฟ้าไหลผ่านซึ่งแรงดันไฟฟ้าที่เกิดขึ้นจะมีค่าไม่เท่ากันโดยสา มารถคำนวณหาได้จากกฎของโอห์ม

RT = R1 + R2 + R3 + R4 + R5

RT = ค่าความต้านทานรวมหรือค่าความต้านทานทั้งหมด R1 ค่าความต้านทานตัวที่ 1 R2 ค่าความต้านทานตัวที่ 2 R3 ค่าความต้านทานตัวที่ 3 R4 ค่าความต้านทานตัวที่ 4 R5 ค่าความต้านทานตัวที่ 5


กระแสไฟฟ้าภายในวงจรอนุกรม

เนื่องจากกระแสไฟฟ้าภายในวงจรอนุกรมมีการไหลในทิศทางเดียว ดังนั้นกระแสไฟฟ้าภายในวงจรอนุกรมจะมีค่าเท่ากันทุกจุด

จากสมการ

IT = I1 = I2 = I3


ความต้านทานรวมในวงจรอนุกรม

ค่าความต้านทานรวมในวงจรอนุกรมนั้น คำนวณได้โดยนำค่าความต้านทานของตัวต้านทานแต่ละตัวมารวมกัน

จากสมการ

RT = R1 + R2 + R3 + R4 +…….

แรงดันไฟฟ้าในวงจรอนุกรม

แรงดันไฟฟ้าในวงจรอนุกรมนั้น คำนวณได้โดยการนำค่าแรงดันไฟฟ้าในวงจรมารวมกัน

จากสมการ

VT = V1 + V2 + V3 + V4 + V5 + ......

ลักษณะคุณสมบัติของวงจรอนุกรม

1. ในวงจรหรือส่วนใดส่วนหนึ่งของวงจรอนุกรมจะมีกระแสไหลผ่านในทิศทางเดียวเท่านั้น

2. แรงดันตกคร่อมที่ความต้านทานแต่ละตัวในวงจรเมื่อนำมาร่วมกันจะมีค่าเท่ากับแรงดันที่จ่ายให้กับวงจร

3. ค่าความต้านทานย่อยแต่ละตัวในวงจร เมื่อนำมารวมกันก็จะมีค่าเท่ากับค่าความต้านทานรวมกันทั้งหมดในวงจร

4. กำลังและพลังงานไฟฟ้าที่เกิดขึ้นที่ความต้านทานย่อยแต่ละตัวในวงจร เมื่อนำมารวมกันก็จะมีค่าเท่ากำลังและพลังงานไฟฟ้าทั้งหมดในวงจร

วงจรขนาน

วงจรที่เกิดจากการต่ออุปกรณ์ไฟฟ้าตั้งแต่ 2 ตัวขึ้นไปให้ขนานกับแหล่งจ่ายไฟมีผลทำให้ค่าของแรงดันไฟฟ้าที่ตกคร่อม อุปกรณ์ไฟฟ้าแต่ละตัวมีค่าเท่ากัน ส่วนทิศทางการไหลของกระแสไฟฟ้าจะมีตั้งแต่ 2 ทิศทางขึ้นไปตามลักษณะของสาขาของวงจรส่วนค่าความต้านทานรวมภายในวงจรขนานจะ มีค่าเท่ากับผลรวมของส่วนกลับของค่าความต้านทานทุกตัวรวมกัน ซึ่งค่าความต้านทานรวมภายในวงจรไฟฟ้าแบบขนานจะมีค่าน้อยกว่าค่าความต้านทาน ภายในสาขาที่มีค่าน้อยที่สุดเสมอ และค่าแรงดันที่ตกคร่อมความต้านทานไฟฟ้าแต่ละตัวจะมีค่าเท่ากับแรงเคลื่อน ของแหล่งจ่าย

แรงดันไฟฟ้าในวงจรขนาน

สำหรับค่าแรงดันไฟฟ้าในวงจรขนานที่ตกคร่อมตัวต้านทานแต่ละตัวนั้น มีค่าเท่ากับค่าแรงดันไฟฟ้าของแหล่งจ่ายไฟ แรงดันไฟฟ้าที่ตกคร่อมความต้านทานแต่ละตัวซึ่งมีค่าเท่ากับ

VR1 = VR2 = VR3 = VR4 = VS = 9V

กระแสไฟฟ้าในวงจรขนาน

กระแสไฟฟ้าภายในวงจรขนานจะมีหลายค่าด้วยกัน ทั้งนี้เนื่องจากทิศทางการไหลของกระแสไฟฟ้ามีมากกว่า 1 ทิศทาง ดังนั้น การคำนวณหาค่ากระแสไฟฟ้าจึงใช้กฎของ Kerchhoff,s Current Law โดยมีวิธีการคำนวณสองวิธีคือ

1. กระแสไฟฟ้ารวมภายในวงจร ( IT ) จะมีค่าเท่ากับผลรวมของกระแสไฟฟ้าที่ไหลแยกในแต่ละทิศทาง ( I1 + I2 + I3 + I4+…..)

2. กระแสไฟฟ้าที่ไหลเข้าสู่จุดๆ หนึ่งจะมีค่าเท่ากับกระแสไฟฟ้าที่ไหลออกจากจุดๆ นั้นเสมอ

ลักษณะคุณสมบัติของวงจรขนาน

1. แรงดันที่ตกคร่อมที่อิลิเมนท์ หรือที่ความต้านทานทุกตัวของวงจรจะมีค่าเท่ากันเพราะว่าเป็นแรงดันตัวเดียวกันในจุดเดียวกัน

2. กระแสที่ไหลในแต่ละสาขาย่อยของวงจร เมื่อนำมารวมกันจะมีค่าเท่ากับกระแสที่ไหลผ่านวงจรทั้งหมดหรือกระแสรวมของวงจร

3. ค่าความนำไฟฟ้าในแต่ละสาขาย่อยของวงจร เมื่อนำมารวมกันจะมีค่าเท่ากับค่าความนำไฟฟ้าทั้งหมดของวงจร

4. กำลังไฟฟ้าที่เกิดขึ้นที่อิลิเมนท์หรือค่าความต้านทานในแต่ละสาขาในวงจร เมื่อนำมาร่วมกันก็จะมีค่าเท่ากับกำลังและพลังงานไฟฟ้าทั้งหมดของวงจรไฟฟ้าในตำนาน

การผลิตและการใช้งาน

เครื่องกำเนิดไฟฟ้าและการส่ง

การใช้งาน

ไฟฟ้าจากธรรมชาติ

พลังงานน้ำ

เครื่องกำเนิดไฟฟ้าใช้น้ำจากเขื่อนไปหมุนกังหัน

พลังงานจากน้ำขึ้นน้ำลง

การเคลื่อนที่ของน้ำขึ้นน้ำลงผ่านช่องแคบสามารถนำไปใช้หมุนกังหันได้

พลังงานลม

การเคลื่อนที่ของลม ทำให้กังหันลมหมุนโดยที่กังหันลม เชื่อมต่อกับตัวแปลงไฟฟ้า นะครับบบบบ

อ้างอิง

  1. Jones, D.A. (1991), "Electrical engineering: the backbone of society", Proceedings of the IEE: Science, Measurement and Technology, 138 (1): 1–10, doi:10.1049/ip-a-3.1991.0001
  2. Moller, Peter; Kramer, Bernd (December 1991), "Review: Electric Fish", BioScience, American Institute of Biological Sciences, 41 (11): 794–6 [794], doi:10.2307/1311732, JSTOR 1311732
  3. Bullock, Theodore H. (2005), Electroreception, Springer, pp. 5–7, ISBN 0-387-23192-7
  4. Morris, Simon C. (2003), Life's Solution: Inevitable Humans in a Lonely Universe, Cambridge University Press, pp. 182–185, ISBN 0-521-82704-3
  5. The Encyclopedia Americana; a library of universal knowledge (1918), New York: Encyclopedia Americana Corp
  6. 6.0 6.1 Stewart, Joseph (2001), Intermediate Electromagnetic Theory, World Scientific, p. 50, ISBN 981-02-4471-1
  7. Simpson, Brian (2003), Electrical Stimulation and the Relief of Pain, Elsevier Health Sciences, pp. 6–7, ISBN 0-444-51258-6
  8. Frood, Arran (27 February 2003), Riddle of 'Baghdad's batteries', BBC, สืบค้นเมื่อ 2008-02-16
  9. Baigrie, Brian (2006), Electricity and Magnetism: A Historical Perspective, Greenwood Press, pp. 7–8, ISBN 0-3133-3358-0
  10. Chalmers, Gordon (1937), "The Lodestone and the Understanding of Matter in Seventeenth Century England", Philosophy of Science, 4 (1): 75–95, doi:10.1086/286445
  11. Srodes, James (2002), Franklin: The Essential Founding Father, Regnery Publishing, pp. 92–94, ISBN 0-89526-163-4 มันไม่แน่ว่าแฟรงคลินดำเนินการทดลองนี้ด้วยตัวเอง แต่นิยมที่จะอุทิศให้กับเขา
  12. Uman, Martin (1987), All About Lightning (PDF), Dover Publications, ISBN 0-486-25237-X
  13. Riskin, Jessica (1998), Poor Richard’s Leyden Jar: Electricity and economy in Franklinist France (PDF), p. 327
  14. 14.0 14.1 14.2 Kirby, Richard S. (1990), Engineering in History, Courier Dover Publications, pp. 331–333, ISBN 0486264122
  15. Berkson, William (1974) Fields of force: the development of a world view from Faraday to Einstein p.148. Routledge, 1974
  16. Marković, Dragana, The Second Industrial Revolution, สืบค้นเมื่อ 2007-12-09
  17. 17.0 17.1 17.2 Sears, Francis; และคณะ (1982), University Physics, Sixth Edition, Addison Wesley, ISBN 0-201-07199-1
  18. Hertz, Heinrich (1887). "Ueber den Einfluss des ultravioletten Lichtes auf die electrische Entladung". Annalen der Physik. 267 (8): S. 983–1000. Bibcode:1887AnP...267..983H. doi:10.1002/andp.18872670827.
  19. "The Nobel Prize in Physics 1921". Nobel Foundation. สืบค้นเมื่อ 2013-03-16.
  20. "Solid state", The Free Dictionary
  21. John Sydney Blakemore, Solid state physics, pp.1-3, Cambridge University Press, 1985 ISBN 0-521-31391-0.
  22. Richard C. Jaeger, Travis N. Blalock, Microelectronic circuit design, pp.46-47, McGraw-Hill Professional, 2003 ISBN 0-07-250503-6.
  23. "The repulsive force between two small spheres charged with the same type of electricity is inversely proportional to the square of the distance between the centres of the two spheres." Charles-Augustin de Coulomb, Histoire de l'Academie Royal des Sciences, Paris 1785.
  24. 24.0 24.1 24.2 24.3 24.4 Duffin, W.J. (1980), Electricity and Magnetism, 3rd edition, McGraw-Hill, ISBN 0-07-084111-X
  25. National Research Council (1998), Physics Through the 1990s, National Academies Press, pp. 215–216, ISBN 0-309-03576-7
  26. Umashankar, Korada (1989), Introduction to Engineering Electromagnetic Fields, World Scientific, pp. 77–79, ISBN 9971-5-0921-0
  27. Hawking, Stephen (1988), A Brief History of Time, Bantam Press, p. 77, ISBN 0-553-17521-1
  28. Trefil, James (2003), The Nature of Science: An A–Z Guide to the Laws and Principles Governing Our Universe, Houghton Mifflin Books, p. 74, ISBN 0-618-31938-7
  29. Shectman, Jonathan (2003), Groundbreaking Scientific Experiments, Inventions, and Discoveries of the 18th Century, Greenwood Press, pp. 87–91, ISBN 0-313-32015-2
  30. Sewell, Tyson (1902), The Elements of Electrical Engineering, Lockwood, p. 18. ค่า Q แต่เดิมหมายถึง 'ปริมาณไฟฟ้า', คำว่า 'ไฟฟ้า' ตอนนี้จะถูกแสดงออกให้เป็นทั่วไปมากขึ้นเป็น 'ประจุ'.
  31. Close, Frank (2007), The New Cosmic Onion: Quarks and the Nature of the Universe, CRC Press, p. 51, ISBN 1-58488-798-2
  32. Ward, Robert (1960), Introduction to Electrical Engineering, Prentice-Hall, p. 18
  33. Solymar, L. (1984), Lectures on electromagnetic theory, Oxford University Press, p. 140, ISBN 0-19-856169-5
  34. Berkson, William (1974), Fields of Force: The Development of a World View from Faraday to Einstein, Routledge, p. 370, ISBN 0-7100-7626-6 Accounts differ as to whether this was before, during, or after a lecture.
  35. "Lab Note #105 EMI Reduction - Unsuppressed vs. Suppressed". Arc Suppression Technologies. April 2011. สืบค้นเมื่อ March 7, 2012.
  36. 36.0 36.1 36.2 Bird, John (2007), Electrical and Electronic Principles and Technology, 3rd edition, Newnes, ISBN 9781417505432

158.108.71 p.6/3