ผลต่างระหว่างรุ่นของ "อุโมงค์"

จากวิกิพีเดีย สารานุกรมเสรี
เนื้อหาที่ลบ เนื้อหาที่เพิ่ม
Roonie.02 (คุย | ส่วนร่วม)
Roonie.02 (คุย | ส่วนร่วม)
บรรทัด 143: บรรทัด 143:


=== วิธีการก่อสร้างอื่น ๆ ===
=== วิธีการก่อสร้างอื่น ๆ ===

* เจาะและระเบิด ({{lang-en|Drill and blasting}})
* เครื่องเจาะไฮโดรลิค ({{lang-en|Hydraulic splitter}})
* เครื่องกั้นสารละลายข้น ({{lang-en|Slurry-shield machine}})
* วิธีก่อสร้างด้วยกำแพงและหลังคา ({{lang-en|Wall-cover construction method}})

== ประเภทของอุโมงค์ ==
=== อุโมงค์แบบดาดฟ้าสองชั้นและแบบอเนกประสงค์ ===

[[ไฟล์:San Francisco-Bay Bridge02.jpg|thumb|ส่วนหนึ่งของสะพานซานฟรานซิสโก - อ่าวโอกแลนด์ผ่านเกาะ Yerba Buena ที่มีช่องทางจราจรอยู่ชั้นบน]]

อุโมงค์บางแห่งมีดาดฟ้าสองชั้น ตัวอย่างเช่นสะพานซานฟรานซิสโก-อ่าวโอกแลนด์ (เสร็จสมบูรณ์ในปี 1936) มีช่วงสำคัญสองช่วงเชื่อมโยงถึงกันโดยอุโมงค์สองชั้นผ่านเกาะ Yerba Buena ซึ่งเป็นอุโมงค์แบบเจาะที่มีเส้นผ่าศูนย์กลางใหญ่ที่สุดในโลก<ref>{{cite web|title=San Francisco-Oakland Bay Bridge|url=http://bata.mtc.ca.gov/bridges/sf-oak-bay.htm|work=Bay Area Toll Authority}}</ref> การก่อสร้างนี้เป็นการผสมกันระหว่างรางสองทิศทางและทางเดินรถบรรทุกบนชั้นล่างกับรถยนต์ชั้นบน ตอนนี้ได้มีการเปลี่ยนเป็นการจราจรทางเดียวบนแต่ละชั้นดาดฟ้า

ในสหราชอาณาจักร อุโมงค์ Queensway 1934 ลอดใต้แม่น้ำเมอร์ซี่ระหว่างลิเวอร์พูลและ Birkenhead เดิมจะมีถนนที่มียานพาหนะวิ่งบนดาดฟ้าชั้นบนและรถรางที่ชั้นล่าง ในระหว่างการก่อสร้างการใช้งานของรถรางที่ถูกยกเลิก ชั้นล่างจึงถูกใช้สำหรับสายเคเบิล ท่อและที่หลบภัยจากอุบัติเหตุฉุกเฉิน

ในเขตปกครองพิเศษฮ่องกง (ของจีน) อุโมงค์ Lion Rock ที่สร้างขึ้นในช่วงกลางทศวรรษ 1960 เชื่อมต่อเกาลูนใหม่กับเมืองใหม่ Sha Tin มีช่องทางด่วนและท่อระบายน้ำ อุโมงค์สองชั้นเร็ว ๆ นี้ที่มีทั้งสองชั้นสำหรับยานยนต์คืออุโมงค์ถนน Fuxing ในเซี่ยงไฮ้, จีน รถยนต์จะวิ่งอยู่บนดาดฟ้าชั้นบนสองเลน และยานพาหนะที่หนักกว่าวิ่งบนเลนเดี่ยวที่ดาดฟ้าชั้นล่าง

อุโมงค์อเนกประสงค์มีวัตถุประสงค์ในการใช้มากกว่าหนึ่งอย่าง อุโมงค์สมาร์ทในประเทศมาเลเซียเป็นอุโมงค์อเนกประสงค์ควบคุมน้ำท่วมแห่งแรกของโลกที่ใช้ทั้งในการระบายการจราจรและระบายน้ำท่วมเป็นครั้งคราวในกัวลาลัมเปอร์

ท่อสาธารณูปโภคที่ใช้ร่วมกัน ({{lang-en|common utility duct}}) หรืออุโมงค์ยูทิลิตี้จะให้บริการกับงานสาธารณูปโภคมากกว่าหนึ่งรายที่เป็นงานบริการที่แตกต่างกันได้ การใช้อุโมงค์ร่วมกันนี้สามารถทำให้องค์กรลดค่าใช้จ่ายของการสร้างและการบำรุงรักษาสาธารณูปโภคของตนเองได้อย่างมาก

=== ทางสัญจรที่มีหลังคา ({{lang-en|Covered passageways}}) ===

[[ไฟล์:Sotetkapu.JPG|right|thumb|upright|Dark Gate ศตวรรษที่ 19 ใน Esztergom, ฮังการี]]

สะพานลอยบางครั้งจะถูกสร้างขึ้นเพื่อคร่อมถนนหรือแม่น้ำหรือรถไฟด้วยซุ้มประตูที่ทำจากอิฐหรือเหล็ก จากนั้นก็ปรับระดับพื้นผิวด้วยดิน ในสำนวนของรถไฟ ทางวิ่งในระดับพื้นผิวที่มีการสร้างคร่อมข้างบนปกติจะถูกเรียกว่า "ทางที่มีหลังคา" ({{lang-en|covered way}})

เพิงหิมะ ({{lang-en|snow shed}}) เป็นอุโมงค์เทียมชนิดหนึ่งที่สร้างขึ้นเพื่อป้องกันทางรถไฟจากหิมะถล่ม ในทำนองเดียวกัน "อุโมงค์เหล็ก" Stanwell Park ที่นิวเซาธ์เวลส์ บนทางรถไฟสายชายฝั่งตอนใต้ เป็นตัวป้องกันสายทางจากหินถล่ม

== ความปลอดภัยและการรักษาความปลอดภัย ==


== อ้างอิง ==
== อ้างอิง ==

รุ่นแก้ไขเมื่อ 11:21, 2 เมษายน 2558

อุโมงค์ในเบลเยี่ยม เดิมเป็นทางรถไฟแต่ปัจจุบันเป็นทางเดินเท้าและจักรยาน
ทางเข้าอุโมงค์ถนนในกวานาวาโต, เม็กซิโก
อุโมงค์สาธารณูปโภคสำหรับท่อความร้อนระหว่าง Rigshospitalet และ Amagerværket ในโคเปนเฮเกน, เดนมาร์ก
อุโมงค์รถไฟใต้ดินไทเปในไต้หวัน
ทางเข้าด้านใต้ยาว 421 เมตร (1,381 ฟุต) อุโมงค์คลอง Chirk

อุโมงค์ (อังกฤษ: Tunnel) คือ ทางสัญจรใต้ดิน ใต้น้ำ ที่ขุดลงไปใต้ดินหรือในภูเขา[1] โดยทั่วไปแล้วจะมีความยาวอย่างน้อยมากกว่าความกว้าง 2 เท่า และมีผนังโอบล้อมทุกด้าน โดยมีปลายเปิดในส่วนหัวและส่วนท้าย อุโมงค์อาจเป็นทางเดินเท้าหรือจักรยานลอดใต้ถนนหรือเชื่อมต่ออาคาร แต่โดยทั่วไปเป็นทางสัญจรสำหรับรถยนต์ รถไฟ หรือคลอง บางที่อาจเป็นทางระบายน้ำ ทางส่งน้ำโดยเฉพาะที่ใช้สำหรับไฟฟ้าพลังน้ำหรือท่อระบายน้ำ หรือในวัตถุประสงค์อื่น เช่นงานสาธารณูปโภคได้แก่ท่อประปา ไฟฟ้า เคเบิลสำหรับโทรคมนาคม หรือแม้กระทั่งอุโมงค์ที่ออกแบบสำหรับเป็นทางเดินสัตว์ป่าสำหรับสัตว์ในยุโรป ที่อาจเป็นอันตราย บางอุโมงค์ลับก็ใช้สำหรับเป็นทางออกสำหรับหนีภัย อุโมงค์บางแห่งไม่ได้เป็นทางสัญจรแต่เป็นป้อมปราการก็มี อย่างไรก็ตามท่อที่ใช้ในการขนส่ง (อังกฤษ: transport pipeline) ไม่เรียกว่าเป็นอุโมงค์เนื่องจากบางอุโมงค์สมัยใหม่ได้ใช้เทคนิคการก่อสร้างแบบ immersed tube (ทำท่อสำเร็จเป็นช่วง ๆ บนดินแล้วนำไปจมที่ไซท์งาน) แทนที่จะใช้วิธีขุดเจาะแบบเดิม

ประวัติความเป็นมา

อุโมงค์ถนน Joralemon ในปี 1913 เป็นส่วนหนึ่งของระบบรถไฟใต้ดินมหานครนิวยอร์ก

เทคโนโลยีจำนวนมากในช่วงต้นของการขุดอุโมงค์ได้วิวัฒนาการมาจากการทำเหมืองแร่และงานวิศวกรรมทางทหาร รากศัพท์ของคำ "เหมืองแร่" (สำหรับการสกัดแร่หรือการโจมตีโอบล้อม), "วิศวกรรมทางทหาร" และ "วิศวกรรมโยธา" เผยให้เห็นการเชื่อมต่อในส่วนลึกของประวัติศาสตร์เหล่านี้

เตะดิน

เตะดิน (อังกฤษ: clay-kicking) เป็นวิธีการเฉพาะที่มีการพัฒนาในสหราชอาณาจักรในการขุดอุโมงค์ขุดด้วยมือบนโครงสร้างของดินเหนียว (อังกฤษ: clay) (ชื่อของเนื้อดิน (soil texture) ซึ่งประกอบด้วยสัดส่วนโดยมวลของกลุ่มอนุภาคดินเหนียวตั้งแต่ร้อยละ 40 ขึ้นไป และกลุ่มอนุภาคทรายไม่เกินร้อยละ 45 และดินอนุภาคทรายแป้ง (silt) ไม่เกินร้อยละ 40) ที่แข็งแรง ซึ่งแตกต่างจากวิธีการขุดด้วยมือก่อนหน้านี้ที่ใช้อีเต้อ (อังกฤษ: mattocks) ซึ่งใช้กับโครงสร้างของดินทั่วไป (อังกฤษ: soil) (เทหวัตถุธรรมชาติซึ่งเกิดขึ้นบนพื้นผิวโลก เป็นวัตถุที่ค้ำจุนการเจริญเติบโตและการทรงตัวของต้นไม้ ประกอบด้วยแร่ธาตุและอินทรียวัตถุต่างๆ และมีลักษณะชั้นแตกต่างกัน ซึ่งแต่ละชั้นที่อยู่ต่อเนื่องกันจะมีความสัมพันธ์ซึ่งกันและกันตามขบวนการ กำเนิดดินที่เป็นผลสืบเนื่องมาจากการกระทำร่วมกันของภมิอากาศ พืชพรรณ วัตถุต้นกำเนิดดิน ตลอดทั้งระยะเวลาและความต่างระดับของพื้นที่ในบริเวณนั้น) ที่จะต้องใช้แรงมาก เตะดินค่อนข้างเงียบและด้วยเหตุนี้เองที่มันไม่ได้เป็นอันตรายต่อโครงสร้างพื้นฐานของดินอ่อน

การตรวจสอบและการออกแบบทางธรณีเทคนิค

บทความหลัก: การตรวจสอบทางธรณีเทคนิค

โครงการอุโมงค์จะต้องเริ่มต้นด้วยการตรวจสอบที่ครอบคลุมสภาพพื้นดินโดยการจัดเก็บตัวอย่างจากการเจาะรู (อังกฤษ: borehole) และโดยใช้เทคนิคทางธรณีฟิสิกส์อื่น ๆ จากนั้นจะทำการเลือกเครื่องจักรและวิธีการเปิดหน้าดินและการรองรับพื้นดินซึ่งจะช่วยลดความเสี่ยงกับสภาพพื้นดินที่ไม่คาดฝัน ในการวางแผนเส้นทางการจัดแถวแนวนอนและแนวตั้งจะใช้ประโยชน์จากสภาพพื้นดินและน้ำที่ดีที่สุด

การศึกษาบนโต๊ะและที่ไซต์งานแบบทั่วไปอาจให้ข้อมูลไม่เพียงพอที่จะประเมินปัจจัยต่าง ๆ เช่นลักษณะการบล็อกของหิน สถานที่ตั้งที่แน่นอนของโซนรอยเลื่อน หรือเวลาตั้งตัว (อังกฤษ: Stand-up time) ของพื้นดินที่อ่อนนุ่ม สิ่งเหล่านี้อาจสร้างความกังวลโดยเฉพาะอย่างยิ่งในงานสร้างอุโมงค์เส้นผ่าศูนย์กลางขนาดใหญ่ เพื่อให้ได้ข้อมูลเพิ่มเติม อุโมงค์นำร่องหรือ drift อาจใช้ดันไปข้างหน้าตัวขุดหลัก อุโมงค์นี้จะง่ายกว่าในการสนับสนุนข้อมูลถ้าสภาพที่ไม่คาดคิดถูกตรวจพบและจะสามารถควบรวมเข้ากับอุโมงค์จริง อีกทางเลือกหนึ่งคือการเจาะรูทดสอบในแนวนอนบางครั้งอาจจะเจาะนำไปข้างหน้าของเครื่องเจาะอุโมงค์

ปัจจัยธรณีเทคนิคอื่น ๆ ที่สำคัญ ได้แก่ :

  • เวลาตั้งตัว เป็นระยะเวลาที่อุโมงค์จะสามารถรับน้ำหนักตัวเองได้โดยไม่ต้องมีโครงสร้างใด ๆ มารองรับเพิ่มเติม การรู้ว่าเวลานี้นานเท่าไรจะช่วยให้วิศวกรสามารถกำหนดได้ว่าจะต้องมีการขุดมากน้อยแค่ไหนก่อนที่การรองรับจะเป็นสิ่งจำเป็น เวลาตั้งตัวยิ่งนานการขุดก็ยิ่งไปได้เร็ว โดยทั่วไปลักษณะบางอย่างของหินและดินเหนียวจะมีเวลาตั้งตัวที่นานมาก ๆ และดินทั่วไปที่เป็นทรายและมีเนื้อละเอียดจะมีเวลาตั้งตัวที่ต่ำกว่ามาก[2]
  • การควบคุมน้ำบาดาลเป็นสิ่งสำคัญมากในการก่อสร้างอุโมงค์ หากมีน้ำรั่วซึมเข้าไปในอุโมงค์ เวลาตั้งตัวจะลดลงอย่างมาก หากมีน้ำรั่วซึมเข้ามาในเพลาเจาะ มันจะกลายเป็นความไม่แน่นอนและจะไม่มีความปลอดภัยในการทำงาน เพื่อหยุดการรั่วซึมนี้มีวิธีการทั่วไปไม่กี่อย่าง อย่างหนึ่งที่มีประสิทธิภาพมากที่สุดคือการแช่แข็งพื้นดิน ในวิธีนี้ท่อจำนวนมากจะถูกดันลงไปในพื้นดินรอบ ๆ เพลาเจาะและมีการหล่อเย็นจนกว่าท่อเหล่านั้นจะเป็นน้ำแข็ง พื้นดินรอบ ๆ ท่อเหล่านั้นก็จะเป็นน้ำแข็งไปด้วย จนเพลาเจาะทั้งหมดถูกล้อมรอบไปด้วยดินแช่แข็ง เป็นการป้องกันไม่ให้น้ำซึมเข้าไปข้างใน วิธีการที่พบมากที่สุดคือการติดตั้งหลายท่อลงไปในดินและเพียงแค่สูบน้ำออก วิธีนี้จะได้ผลสำหรับอุโมงค์และเพลาเจาะ[3]
  • รูปร่างของอุโมงค์ก็เป็นสิ่งที่สำคัญมากในการกำหนดเวลาตั้งตัว แรงโน้มถ่วงจะกดลงไปตรง ๆ บนอุโมงค์ ดังนั้นหากอุโมงค์มีความกว้างมากกว่าความสูง มันก็จะลำบากยิ่งขึ้นที่จะต้องรับน้ำหนักตัวเอง นี่เป็นการลดเวลาตั้งตัว หากอุโมงค์มีความสูงมากกว่าความกว้าง เวลาตั้งตัวก็จะเพิ่ม ทำให้โครงการง่ายขึ้น รูปร่างที่ยากที่สุดในการรองรับน้ำหนักตัวเองตืออุโมงค์รูปสี่เหลี่ยมจตุรัสหรือรูปสี่เหลี่ยมผืนผ้า แรงก็ยากที่จะกระจายเปลี่ยนเส้นทางไปรอบอุโมงค์ทำให้มันยากมากที่จะรองรับน้ำหนักตัวเอง สิ่งเหล่านี้แน่นอนว่าขึ้นอยู่กับพื้นดินว่าเป็นวัสดุอะไร[4]

ทางเลือกของอุโมงค์เมื่อเทียบกับสะพาน

อุโมงค์ฮาร์เบอร์ในบัลติมอร์ซึ่งเป็นส่วนหนึ่งของทางหลวงระหว่างรัฐ I-95 เป็นตัวอย่างหนึ่งของอุโมงค์ข้ามน้ำสร้างขึ้นแทนที่จะเป็นสะพาน

สำหรับการข้ามน้ำ อุโมงค์โดยทั่วไปจะแพงมากกว่าการสร้างสะพาน การพิจารณาเพื่อการเดินเรืออาจจำกัดการใช้สะพานสูงหรือช่วงความยาวสะพานที่ตัดกับสถานีขนส่งทางเรือจึงจำเป็นต้องทำเป็นอุโมงค์

สะพานมักจะต้องใช้พื้นที่บริเวณตีนสะพานบนแต่ละฝั่งที่มีขนาดใหญ่กว่าอุโมงค์ ในหลายพื้นที่ที่อสังหาริมทรัพย์มีราคาแพงเช่นแมนฮัตตันและในเมืองฮ่องกง สิ่งนี้เป็นปัจจัยที่แข็งแกร่งที่จะเลือกอุโมงค์มากกว่า โครงการบอสตันบิ๊กดิกได้แทนที่ถนนยกระดับด้วยระบบอุโมงค์เพื่อเพิ่มความจุการจราจร แอบการจราจร การเวณคืนที่ดิน การตบแต่งใหม่ และรวมตัวของเมืองกับสภาพริมน้ำ ในแฮมป์ตันโรดส์ รัฐเวอร์จิเนีย หลายอ​​ุโมงค์ได้รับการคัดเลือกแทนที่สะพานเมื่อพิจารณาในเชิงกลยุทธ์ ในกรณีที่มีความเสียหายสะพานจะกีดขวางไม่ให้เรือของกองทัพเรือสหรัฐออกจากสถานีทหารเรือนอร์โฟล์ค

ถนนอุโมงค์ Queensway 1934 ลอดใต้แม่น้ำเมอร์ซี่ที่ลิเวอร์พูลได้รับเลือกให้ชนะสะพานสูงหนาแน่นด้วยเหตุผลด้านการป้องกัน: มีความกลัวว่าเครื่องบินอาจทำลายสะพานในช่วงสงคราม ค่าใช้จ่ายในการบำรุงรักษาสะพานหนาแน่นเพื่อให้เรือใหญ่ที่สุดในโลกสามารถที่จะเดินทางลอดไปได้ได้รับการพิจารณาว่าสูงกว่าอุโมงค์เสียอีก ข้อสรุปที่คล้ายกันก็นำมาใช้กับอุโมงค์ Kingsway 1971 ลอดใต้แม่น้ำเมอร์ซี่

อุโมงค์ข้ามน้ำที่ถูกสร้างขึ้นแทนสะพานได้แก่อุโมงค์ฮอลแลนด์และอุโมงค์ลินคอล์นระหว่างรัฐนิวเจอร์ซีย์กับเมืองแมนฮัตตันในนิวยอร์กซิตี้ อุโมงค์ควีนมิดทาวน์ระหว่างแมนฮัตตันกับเมืองบอโรของเมืองควีนส์ที่ลองไอส์แลนด์ และอุโมงค์แม่น้ำแอลิซาเบธระหว่างนอร์โฟล์คกับพอร์ตสมัธเวอร์จิเนีย อุโมงค์ Queensway 1934 ลอดใต้ถนนแม่น้ำเมอร์ซี่ อุโมงค์เวสเทิร์น Scheldt ในเซลันด์เนเธอร์แลนด์และอุโมงค์ North Shore Connector ในพิตส์เบิร์กเพนซิลเวเนีย

เหตุผลอื่น ๆ สำหรับการเลือกอุโมงค์แทนที่จะเป็นสะพานจะรวมถึงการหลีกเลี่ยงปัญหากับคลื่นลม สภาพอากาศและการขนส่งในระหว่างการก่อสร้าง (อย่างเช่นอุโมงค์ลอดช่องแคบอังกฤษยาว 51.5 กิโลเมตรหรือ 32.0 ไมล์) เหตุผลด้านความงาม (รักษามุมมองเหนือพื้นดิน, ภูมิทัศน์และ ทิวทัศน์) และด้วยเหตุผลความจุน้ำหนัก (มันอาจจะเป็นไปได้มากกว่าที่จะสร้างอุโมงค์แทนสะพานที่แข็งแกร่งเพียงพอ)

การข้ามน้ำบางแห่งเป็นส่วนผสมของสะพานและอุโมงค์เช่นสะพานออร์ซันด์ที่เชื่อมระหว่างเดนมาร์กกับสวีเดนและสะพานอุโมงค์อ่าวเชสสพีคในรัฐเวอร์จิเนีย

มีตัวอย่างของอันตรายกับอุโมงค์โดยเฉพาะอย่างยิ่งจากการเกิดเพลิงไหม้รถเมื่อก๊าซเผาไหม้สามารถผู้ใช้สำลักควัน อย่างเช่นที่เกิดขึ้นที่อุโมงค์ถนน Gotthard ในสวิตเซอร์แลนด์ในปี 2001 หนึ่งในภัยพิบัติทางรถไฟที่เลวร้ายที่สุดเท่าที่เคยมีคืออุบัติเหตุรถไฟ Balvano เกิดจากรถไฟติดค้างอยู่ในอุโมงค์ Armi ในอิตาลีในปี 1944 มีผู้โดยสารผู้เสียชีวิต 426 ราย

ประมาณการค่าใช้จ่ายและงบเกินมากเกินไป

เงินของรัฐบาลเป็นปัจจัยสำคัญในการสร้างอุโมงค์[5] เมื่ออุโมงค์อยู่ในระหว่างการก่อสร้าง เศรษฐกิจและการเมืองจะเป็นปัจจัยขนาดใหญ่ในกระบวนการตัดสินใจ หน่วยงานหนึ่งของโครงการนี​​้เป็นส่วนหนึ่งของการบริหารจัดการการก่อสร้าง/การบริหารโครงการด้านงานวิศวกรรมโยธา ระยะเวลาโครงการจะต้องมีการระบุในโครงสร้างงานแยกย่อย (อังกฤษ: work breakdown structure (WBS)) และวิธีการเส้นทางวิกฤต (อังกฤษ: critical path method (CPM)) เพื่อเข้าใจเกี่ยวกับปริมาณเวลาโครงการต้องมีปริมาณของแรงงานและวัสดุที่ต้องใช้เป็นส่วนสำคัญของโครงการ นอกจากนี้ปริมาณของที่ดินที่จะต้องมีการขุดและเครื่องจักรที่เหมาะสมที่จำเป็นก็ยังเป็นสิ่งสำคัญมากอีกด้วย เนื่องจากโครงสร้างพื้นฐานจำเป็นต้องใช้เงินนับล้านหรือแม้กระทั่งพันล้านดอลลาร์ การแสวงหาเงินทุนเหล่านี้เป็นสิ่งที่ท้าทาย

ความจำเป็นสำหรับโครงสร้างพื้นฐานเช่นอุโมงค์จะต้องมีการระบุ ปัญหาทางการเมืองมีโอกาศที่จะเกิดขึ้นได้เหมือนอย่างที่มันเคยเกิดในปี 2005 เมื่อสภาผู้แทนราษฎรแห่งสหรัฐอเมริกาได้อนุมัติทุนของรัฐบาลกลาง $100 ล้านในการสร้างอุโมงค์ในท่าเรือนิวยอร์ก อย่างไรก็ตามการท่าเรือแห่งนิวยอร์กและนิวเจอร์ซีย์ได้ตระหนักถึงโครงการนี้และไม่เคยขอเงินช่วยเหลือหรือขอให้มีโครงการดังกล่าว[6] สถานะปัจจุบันของเศรษฐกิจได้สะท้อนให้เห็นถึงจำนวนเงินที่รัฐบาลสามารถให้แก่โครงการสาธารณะ เนื่องจากเงินของผู้เสียภาษีถูกส่งไปที่โครงการต่าง ๆ เช่นการสร้างอุโมงค์หรือโครงสร้างพื้นฐานอื่น ๆ ภาษีที่เพิ่มขึ้นอาจทำให้เกิดปัญหา[7]

งานก่อสร้าง

อุโมงค์จะถูกขุดผ่านประเภทของวัสดุที่แตกต่างตั้งแต่ดินเหนียวนุ่มจนถึงหินแข็ง วิธีการก่อสร้างอุโมงค์ขึ้นอยู่กับปัจจัยต่างๆเช่นสภาพของดิน สภาพของน้ำใต้ดิน ความยาวและขนาดเส้นผ่าศูนย์กลางของอุโมงค์ ความลึกของอุโมงค์ การจัดส่งเพื่อสนับสนุนการขุดดิน การใช้งานและรูปร่างขั้นสุดท้ายของอุโมงค์ และการจัดการความเสี่ยงที่เหมาะสม

พื้นฐานของการก่อสร้างอุโมงค์ที่มีการใช้กันอยู่ทั่วไปมีสองประเภท คือ

  1. อุโมงค์แบบขุดและกลบ สร้างขึ้นในร่องตื้นแล้วกลบด้านบน
  2. อุโมงค์แบบเจาะ สร้างในไซต์งานโดยไม่ต้องรื้อพื้นดินด้านบนออก พวกมันมักจะมีหน้าตัดเป็นวงกลมหรือเกือกม้า

อนึ่ง ในปัจจุบันมีการสร้างอุโมงค์แบบท่อ (อังกฤษ: Immersed tube tunnel) โดยการสร้างท่อเหมือนหลอดบนฝั่ง แล้วนำไปวางบนพื้นทะเลหรือฝังตื้น ๆ ใต้พื้นทะเล

ขุดและกลบ

การก่อสร้างแบบขุดและกลบของรถไฟฟ้าปารีสในฝรั่งเศส

ขุดและกลบ เป็นวิธีที่ง่ายของการก่อสร้างอุโมงค์ตื้น ๆ โดยการขุดเป็นร่องและปิดเป็นหลังคาด้านบนด้วยโครงสร้างรองรับที่แข็งแรงพอที่จะแบกน้ำหนักของสิ่งที่จะถูกสร้างขึ้นเหนืออุโมงค์นั้น พื้นฐานของการขุดและกลบอุโมงค์มีอยู่สองรูปแบบ ได้แก่

  1. วิธีจากล่างขึ้นบน (อังกฤษ: Bottom-up method): ร่องจะถูกขุดขึ้นเป็นส่วนด้านล่าง อาจต้องตอกเข็มตามความจำเป็น แล้วสร้างเป็นอุโมงค์ขึ้นด้านบน อุโมงค์อาจเทคอนกรีตในไซต์งาน หรือใช้คอนกรีตหล่อสำเร็จ ซุ้มโค้งแบบสำเร็จ หรือโค้งเหล็กลูกฟูก ในยุคแรกจะใช้การก่ออิฐ จากนั้นร่องจะถูกกลบอย่างระมัดระวังและพื้นผิวถูกปรับให้กลับเป็นเหมือนเดิม
  2. วิธีจากบนลงล่าง (อังกฤษ: Top-down method): ตอนแรกจะสร้างโครงสร้างขนาดใหญ่เหมือนกล่องคว่ำหน้าตือมีผนังรองรับด้านข้างโดยรอบและคานเหล็กปิดหัวที่ระดับพื้นดินโดยวิธีการเช่นกำแพงสารละลายทึบน้ำ (อังกฤษ: slurry wall) (เป็นวิธีการควบคุมการแพร่กระจายของสารปนเปื้อนต่อน้ำใต้ดิน วัสดุที่ใช้ก่อสร้างกำแพงทึบน้ำทำจากดินเหนียวผสมเบนโทไนต์ หรือซีเมนต์ผสมเบนโทไนต์ หรือการอัดฉีดซีเมนต์ โดยจะก่อสร้างกำแพงทึบน้ำในแนวดิ่ง เพื่อควบคุมการแพร่กระจายของสารปนเปื้อนในแนวราบ สามารถก่อสร้างได้ทั้งด้านต้นน้ำและท้ายน้ำ ขึ้นอยู่กับสถานการณ์ [สิ่งแวดล้อม]) หรือการปักเสาเข็มเจาะติดกัน (อังกฤษ: contiguous bored piling) จากนั้น ทำการขุดดินตื้นเพื่อสร้างหลังคาอุโมงค์ด้วยคานสำเร็จรูปหรือหล่อในแหล่ง จากนั้น พื้นผิวด้านบนจะถูกคืนสภาพยกเว้นช่องเปิดเพื่อเป็นทางเข้า การทำเช่นนี้จะช่วยให้คืนสถาพได้เร็วขึ้นของการจราจร การบริการและการใช้งานพื้นผิวอื่น ๆ การขุดอุโมงต์จะเกิดขึ้นภายใต้หลังคาอุโมงค์ถาวรและแผ่นพื้นจะถูกสร้างขึ้นเป็นฐาน

อุโมงค์ที่ตื้นมักจะเป็นแบบขุดและกลบ (ถ้าอยู่ใต้น้ำจะเป็นชนิดจุ่มน้ำ) ในขณะที่อุโมงค์ที่ลึกจะเป็นแบบขุด มักจะใช้วิธีโล่อุโมงค์ (อังกฤษ: tunnelling shield) สำหรับอุโมงค์ระดับกลางอาจใช้ได้ทั้งสองวิธี

กล่องแบบขุดและกลบขนาดใหญ่หลายกล่องมักจะใช้สำหรับสร้างสถานีรถไฟใต้ดินในเมืองเช่นสถานีรถไฟใต้ดินคานารีวาร์ฟในกรุงลอนดอน รูปแบบการก่อสร้างนี้โดยทั่วไปมีสองระดับซึ่งจะช่วยให้มีการประหยัดพื้นที่สำหรับห้องโถงขายตั๋ว ชานชาลา ทางเข้าของผู้โดยสารและทางออกฉุกเฉิน การระบายอากาศและการควบคุมควัน ห้องพักเจ้าหน้าที่และห้องอุปกรณ์ ภายในสถ​​านี Canary Wharf ถูกทำให้เหมือนโบสถ์ใต้ดินแห่งหนึ่งเนื่องจากขนาดที่แท้จริงของการขุดดิน การทำเช่นนี้ขัดกับสถานีแบบดั้งเดิมจำนวนมากในรถไฟใต้ดินลอนดอนในที่ซึ่งอุโมงค์แบบเจาะถูกนำมาใช้สำหรับสถานีและทางเข้าของผู้โดยสาร อย่างไรก็ตามส่วนดั้งเดิมของเครือข่าย 'รถไฟใต้ดินลอนดอน' หรือ 'การรถไฟมหานครและเขต' ถูกสร้างขึ้นโดยใช้แบบขุดและกลบ เส้นทางรถไฟฟ้าระบบรางในยุคแรกและการก่อสร้างที่ใกล้กับผิวดินเหล่านี้เป็นประโยชน์ในการระบายควันและไอน้ำที่หลีกเลี่ยงไม่ได้

ข้อเสียที่สำคัญของการขุดและกลบก็คือการทำให้เกิดการกีดขวางอย่างกว้างขวางในระดับพื้นผิวในระหว่างการก่อสร้าง สิ่งนี้และความพร้อมของไฟฟ้​​าระบบรางได้ทำให้ระบบขนส่งใต้ดินของลอนดอนเปลี่ยนไปใช้วิธีการสร้างอุโมงค์แบบเจาะในระดับที่ลึกกว่าเดิมไปจนถึงช่วงปลายศตวรรษที่ 19

เครื่องเจาะ

บทความหลัก: เครื่องเจาะอุโมงค์ (อังกฤษ: Tunnel Boring Machine (TBM))

เครื่องเจาะอุโมงค์ที่ใช้ในการขุดอุโมงค์ Gotthard Base (สวิตเซอร์แลนด์), อุโมงค์ที่ยาวที่สุดในโลก

เครื่องเจาะอุโมงค์ (TBM) และระบบสำรองที่เกี่ยวข้องจะใช้ในกระบวนการอัตโนมัติอย่างสูงสำหรับการขุดอุโมงค์อย่างครบวงจร เป็นการลดค่าใช้จ่ายในการขุดอุโมงค์ ในการใช้งานในเมืองเป็นส่วนใหญ่ การเจาะอุโมงค์ถูกมองว่าเป็นทางเลือกที่รวดเร็วและมีประสิทธิภาพด้านค่าใช้จ่ายดีกว่าเมื่อเทียบกับการวางรางและถนนบนพื้นผิว ราคาของอาคารและที่ดินที่แพงและการจัดซื้อจัดหาที่อาจต้องใช้เวลานานจะถูกกำจัดออกไป ข้อเสียของ TBM เกิดขึ้นจากขนาดที่มักจะใหญ่ของมัน - ความยากลำบากในการขนส่ง TBM ขนาดใหญ่ไปยังไซต์งานการก่อสร้างอุโมงค์หรือ (อีกทางเลือก) ค่าใช้จ่ายที่สูงในการประกอบ TBM ในสถานที่ขุดเจาะที่มักจะอยู่ในบริเวณที่จะสร้างอุโมงค์

TBM มีการออกแบบที่หลากหลายที่สามารถทำงานในหลายสภาพตั้งแต่หินแข็งจนถึงดินชุ่มน้ำ บางชนิดของ TBM เป็นเครื่องที่ใช้สารละลายเบนโทไนต์และแรงดันดินแบบสมดุลซึ่งจะมีห้องแรงดันสูงอยู่ด้านหน้าของเครื่องที่ช่วยให้มันทำงานได้ในสภาวะที่ยากลำบากใต้พื้นน้ำ Pressurizes ห้องนี้จะอัดแรงดันไปที่ชั้นดินข้างหน้าของหัวตัดของเครื่อง TBM เพื่อทำสมดุลกับแรงดันของน้ำ ผู้ขับเครื่องจะทำงานในความดันอากาศปกติอยู่ด้านหลังห้องแรงดันนี้ แต่บางครั้งอาจจะต้องเข้าไปในห้องนี้เพื่อเปลี่ยนหรือซ่อมแซมหัวตัด กระบวนการนี้ต้องใช้ความระมัดระวังเป็นพิเศษเช่นการรักษาพื้นดินท้องถิ่นหรือการหยุดเครื่อง TBM ที่ตำแหน่งที่ไม่มีน้ำ แม้จะมีปัญหาเหล​​่านี้ TBM ก็ยังเป็นที่ต้องการในขณะนี้มากกว่าวิธีการขุดอุโมงค์แบบเก่าในอากาศที่ถูกบีบอัด ที่มีห้องล็อคอากาศ/ลดแรงดันอยู่ด้านหลังของเครื่อง TBM ซึ่งผู้ปฏิบัติงานจะต้องทำงานในความดันสูงและเมื่อเลิกงานจะต้องผ่านขั้นตอนการลดแรงดันเหมือนนักดำน้ำในทะเลลึก

ในเดือนกุมภาพันธ์ปี 2010 Aker เวิร์ธ ได้จัดส่งเครื่อง TBM ไปให้ในงานขยายสถานีพลังงาน ลินท์-Limmern ในสวิตเซอร์แลนด์ หลุมเจาะมีขนาดเส้นผ่าศูนย์กลาง 8.03 เมตร (26.3 ฟุต)[8] เครื่องเจาะ TBM สี่ตัวใช้สำหรับการขุดอุโมงค์ Gotthard Base ในสวิสยาว 57 กิโลเมตร (35 ไมล์) มีเส้นผ่าศูนย์กลางประมาณ 9 เมตร (30 ฟุต) เครื่อง TBM ขนาดที่ใหญ่กว่าสร้างขึ้นเพื่อเจาะอุโมงค์ Green Heart (ดัตช์: อุโมงค์ Groene Hart) เป็นส่วนหนึ่งของโครงการ HSL- Zuid ในเนเธอร์แลนด์มีเส้นผ่าศูนย์กลาง 14.87 เมตร (48.8 ฟุต)[9] ซึ่งในทางกลับถูกแทนที่โดยถนนวงแหวน มาดริด M30 ในสเปน และอุโมงค์ลอดใต้แม่น้ำ Yangtze (อุโมงค์ Chong Ming) ในเซี่ยงไฮ้ของจีน ทั้งหมดของเครื่องเหล่านี้ถูกสร้างขึ้นอย่างน้อยบางส่วนโดยบริษัท Herrenknecht. ณ เดือนสิงหาคม 2013 เครื่อง TBM ที่ใหญ่ที่สุดในโลกคือ "บิ๊กเบอร์ธ่า" ขนาดเส้นผ่าศูนย์กลาง 57.5 ฟุต (17.5 เมตร) สร้างโดย Hitachi Zosen คอร์ปอเรชั่นซึ่งทำการขุดสะพานอุโมงค์อะแลสกาทางทดแทนในซีแอตเติล, วอชิงตัน (US)[10]

ปล่อง

ภาพวาดในปี 1886 แสดงระบบการระบายอากาศและระบบระบายน้ำของอุโมงค์รถไฟเมอร์ซี่

ปล่อง (ช่องชาร์ฟ) ทางเข้าชั่วคราวบางครั้งเป็นสิ่งจำเป็นในระหว่างการขุดอุโมงค์ มันมักจะกลมและเจาะตรงลงไปจนถึงระดับอุโมงค์ ปล่องปกติจะมีผนังเป็นคอนกรีตและมักจะถูกสร้างขึ้นเป็นแบบถาวร เมื่อปล่องทางเข้าเสร็จสมบูรณ์ เครื่องTBM จะถูกหย่อนลงไปที่ด้านล่างและเริ่มต้นการขุดได้ ปล่องเป็นทางเข้าและทางออกหลักของอุโมงค์จนกว่าโครงการจะเสร็จสมบูรณ์ หากอุโมงค์มีความยาวมาก ปล่องอาจมีการสร้างหลายจุดเพื่อให้มีทางเข้าออกของอุโมงค์อยู่ใกล้กับพื้นที่ที่ไม่ถูกขุด [4]

หลังจากการก่อสร้างเสร็จสมบูรณ์ ปล่องเข้าออกมักจะใช้เป็นช่องระบายอากาศและยังอาจใช้เป็นทางออกฉุกเฉินได้อีกด้วย

เทคนิคคอนกรีตแบบพ่น

วิธีสร้างอุไมงค์แบบออสเตรียใหม่ (อังกฤษ: New Austrian Tunneling Method (NATM)) ได้รับการพัฒนาในปี 1960s และเป็นที่รู้จักกันดีที่สุดของในการแก้ปัญหาทางวิศวกรรมที่ใช้การวัดแบบคำนวณและเชิงประจักษ์ในเวลาจริงเพื่อหาการสนับสนุนที่มีประสิทธิภาพด้านความปลอดภัยที่สูงที่สุดสำหรับการซับในของอุโมงค์ แนวคิดหลักของวิธีนี้คือการใช้ความเครียดทางธรณีวิทยาของมวลหินโดยรอบเพื่อรักษาเสถียรภาพของตัวอุโมงค์เองโดยการกำหนดค่าการยืดหยุ่นและค่าความเครียดที่วัดได้ให้ใหม่กับหินโดยรอบเพื่อ ป้องกันไม่ให้โหลดจำนวนเต็มกดทับลงไปบนโครงสร้างที่รองรับตัวอุโมงค์. โดยขึ้นอยู่กับการวัดด้านปฐพีเทคนิค ภาคตัดขวางทางธรณีวิทยาที่ดีที่สุดจะถูกคำนวณออกมา การขุดจะได้รับการคุ้มครองทันทีหลังจากขุดโดยคอนกรีตพ่นเป็นชั้น ๆ ที่ปกติจะเรียกว่า shotcrete มาตรการในการรองรับน้ำหนักอื่น ๆ อาจรวมถึงการทำซุ้มประตูเหล็ก และเหล็กเสียบ (อังกฤษ: rockbolts) และตาข่าย การพัฒนาทางเทคโนโลยีในการฉีดพ่นคอนกรีตมีผลให้มีการเพิ่มเหล็กและเส้นใยโพลีโพรพิลีนเข้ามาผสมกับคอนกรีตเพื่อเพิ่มความแข็งแรงของการซับใน ซึ่งจะสร้างวงแหวนแบกโหลดตามธรรมชาติที่ช่วยลดความผิดปกติของหิน

อุโมงค์สาธารณูปโภค Illowra Battery ที่ Port Kembla หนึ่งในหลายบังเกอร์ทางตอนใต้ของซิดนีย์

โดยการตรวจสอบพิเศษ วิธี NATM มีความยืดหยุ่นมาก แม้ในการเปลี่ยนแปลงที่ไม่คาดคิดของความแน่นอนของสภาพทางปฐพีเทคนิคของหินในระหว่างการทำงานอุโมงค์ คุณสมบัติของหินที่วัดได้ทำให้เกิดเครื่องมือที่เหมาะสมสำหรับการเสริมสร้างความแข็งแกร่งของอุโมงค์ ในทศวรรษที่ผ่านมา การขุดเจาะพื้นดินนุ่มที่สามารถทำได้ยาวถึง 10 กิโลเมตร (6.2 ไมล์) กลายเป็นเรื่องธรรมดา

การดันท่อ

บทความหลัก: การดันท่อ (อังกฤษ: Pipe jacking)

ในการดันท่อ เครื่อดันแบบไฮโดรลิกจะใช้ในการดันเพื่อทำเป็นท่อพิเศษผ่านพื้นดินที่อยู่เบื้องหลัง TBM หรือโล่ ใช้กันทั่วไปในการสร้างอุโมงค์ภายใต้โครงสร้างที่มีอยู่เช่นถนนหรือทางรถไฟ อุโมงค์ที่สร้างขึ้นโดยการดันท่อตามปกติมีขนาดเล็ก ขนาดเส้นผ่าศูนย์กลางสูงสุดประมาณ 3.2 ม.

การดันกล่อง

การดันกล่อง (อังกฤษ: Boxjacking) คล้ายกับการดันท่อ แต่แทนที่จะเป็นท่อ แต่เป็นกล่องรูปอุโมงค์ กล่องที่ถูกดันอาจมีช่วงยาวกว่าท่อดันที่มีช่วงยาวของกล่องในบางส่วนที่เกินกว่า 20 เมตร หัวตัดปกติจะถูกใช้ที่ด้านหน้าของกล่องที่ถูกดันและการขุดปกติจะทำโดยตัวขุดจากภายในกล่อง

อุโมงค์ใต้น้ำ

อุโมงค์ปลาฉลามที่พิพิธภัณฑ์สัตว์น้ำจอร์เจีย

บทความหลัก: อุโมงค์ใต้ทะเล

มีหลายวิธีในการสร้างอุโมงค์ใต้น้ำ มีสองวิธีที่พบมากที่สุดคือแบบขุดเจาะและแบบจุ่มน้ำ ตัวอย่างได้แก่ อุโมงค์ Bjørvika และอุโมงค์ Marmaray อุโมงค์แบบลอยโผล่บนน้ำเป็นแนวทางใหม่ที่อยู่ระหว่างการพิจารณา แต่ยังไม่มีอุโมงค์ดังกล่าวสร้างขึ้นในปัจจุบัน

ทางชั่วคราว

ในระหว่างการก่อสร้างอุโมงค์ มักจะสะดวกในการสร้างระบบรางชั่วคราวโดยเฉพาะอย่างยิ่งเพื่อขนดินที่ขุดออกมาด้านนอก ระบบรางชั่วคราวมักจะเป็นแบบรางแคบเพื่อที่จะสามารถสร้างเป็นรงคู่คู่เพื่อให้ทำเป็นรางเปล่าและรางขนโหลดได้ในเวลาเดียวกัน ทางชั่วคราวจะถูกแทนที่ด้วยทางถาวรเมื่อโครงการเสร็จสิ้น ทางถาวรจึงถูกเรียกว่า "Perway"


การขยายตัว

อุโมงค์สาธารณูปโภคในกรุงปราก

ยานพาหนะหรือการจราจรที่ใช้อุโมงค์สามารถเติบโตเร็วกว่าตัวอุโมงค์เอง จึงต้องมีการเปลี่ยนหรือขยายตัว อุโมงค์ Gib ใกล้ Mittagong แต่เดิมเป็นแบบรางเดี่ยว จึงถูกแทนที่ด้วยอุโมงค์แบบรางคู่ โดยที่อุโมงค์เดิมถูกใช้สำหรับปลูกเห็ด[ต้องการอ้างอิง] อุโมงค์ Rhyndaston ถูกขยายโดยใช้ TBM ที่ยืมมาเพื่อที่จะสามารถรองรับตู้คอนเทนเนอร์มาตรฐานได้

อุโมงค์แบบรางคู่ในปี 1836 ยาวหนึ่งไมล์จาก Edge Hill ไปยัง Lime Street ในลิเวอร์พูลได้ถูกริ้อย้ายออกทั้งหมด(ยกเว้นช่วง 50 เมตรจาก Edge Hill) เพื่อทำเป็นแบบสี่ราง อุโมงค์ถูกดัดแปลงให้เป็นแบบสี่รางด้วยวิธีขุดที่ลึกมากและมีส่วนที่เป็นอุโมงค์สี่รางเพียงระยะสั้น ๆ บริการของรถไฟไม่ได้ถูกขัดจังหวะในระหว่างการทำงาน รูปถ่ายระหว่างการทำงานสามารถดูได้จาก:[11][12] อุโมงค์ออเบิร์นเป็นอีกตัวอย่างหนึ่งของการแทนที่อุโมงค์ด้วยวิธีการขุดเปิด (อังกฤษ: open cut)

นอกจากนี้อุโมงค์ยังสามารถขยายขนาดโดยการลดระดับพื้นให้ต่ำลง [ต้องการอ้างอิง]

หลุมที่สร้างแบบเปิด

หลุมที่สร้างแบบเปิด (อังกฤษ: Open building pit) ประกอบด้วยขอบเขตแนวนอนและแนวตั้งที่กันไม่ให้น้ำใต้ดินและดินเข้าไปในบ่อ มีทางเลือกและรูปแบบผสมที่มีศักยภาพหลายอย่างสำหรับขอบเขต (แนวนอนและแนวตั้ง) ของหลุมที่สร้าง ความแตกต่างที่สำคัญที่สุดจากการขุดและกลบก็คือหลุมที่สร้างจะไม่มีหลังคา

วิธีการก่อสร้างอื่น ๆ

  • เจาะและระเบิด (อังกฤษ: Drill and blasting)
  • เครื่องเจาะไฮโดรลิค (อังกฤษ: Hydraulic splitter)
  • เครื่องกั้นสารละลายข้น (อังกฤษ: Slurry-shield machine)
  • วิธีก่อสร้างด้วยกำแพงและหลังคา (อังกฤษ: Wall-cover construction method)

ประเภทของอุโมงค์

อุโมงค์แบบดาดฟ้าสองชั้นและแบบอเนกประสงค์

ส่วนหนึ่งของสะพานซานฟรานซิสโก - อ่าวโอกแลนด์ผ่านเกาะ Yerba Buena ที่มีช่องทางจราจรอยู่ชั้นบน

อุโมงค์บางแห่งมีดาดฟ้าสองชั้น ตัวอย่างเช่นสะพานซานฟรานซิสโก-อ่าวโอกแลนด์ (เสร็จสมบูรณ์ในปี 1936) มีช่วงสำคัญสองช่วงเชื่อมโยงถึงกันโดยอุโมงค์สองชั้นผ่านเกาะ Yerba Buena ซึ่งเป็นอุโมงค์แบบเจาะที่มีเส้นผ่าศูนย์กลางใหญ่ที่สุดในโลก[13] การก่อสร้างนี้เป็นการผสมกันระหว่างรางสองทิศทางและทางเดินรถบรรทุกบนชั้นล่างกับรถยนต์ชั้นบน ตอนนี้ได้มีการเปลี่ยนเป็นการจราจรทางเดียวบนแต่ละชั้นดาดฟ้า

ในสหราชอาณาจักร อุโมงค์ Queensway 1934 ลอดใต้แม่น้ำเมอร์ซี่ระหว่างลิเวอร์พูลและ Birkenhead เดิมจะมีถนนที่มียานพาหนะวิ่งบนดาดฟ้าชั้นบนและรถรางที่ชั้นล่าง ในระหว่างการก่อสร้างการใช้งานของรถรางที่ถูกยกเลิก ชั้นล่างจึงถูกใช้สำหรับสายเคเบิล ท่อและที่หลบภัยจากอุบัติเหตุฉุกเฉิน

ในเขตปกครองพิเศษฮ่องกง (ของจีน) อุโมงค์ Lion Rock ที่สร้างขึ้นในช่วงกลางทศวรรษ 1960 เชื่อมต่อเกาลูนใหม่กับเมืองใหม่ Sha Tin มีช่องทางด่วนและท่อระบายน้ำ อุโมงค์สองชั้นเร็ว ๆ นี้ที่มีทั้งสองชั้นสำหรับยานยนต์คืออุโมงค์ถนน Fuxing ในเซี่ยงไฮ้, จีน รถยนต์จะวิ่งอยู่บนดาดฟ้าชั้นบนสองเลน และยานพาหนะที่หนักกว่าวิ่งบนเลนเดี่ยวที่ดาดฟ้าชั้นล่าง

อุโมงค์อเนกประสงค์มีวัตถุประสงค์ในการใช้มากกว่าหนึ่งอย่าง อุโมงค์สมาร์ทในประเทศมาเลเซียเป็นอุโมงค์อเนกประสงค์ควบคุมน้ำท่วมแห่งแรกของโลกที่ใช้ทั้งในการระบายการจราจรและระบายน้ำท่วมเป็นครั้งคราวในกัวลาลัมเปอร์

ท่อสาธารณูปโภคที่ใช้ร่วมกัน (อังกฤษ: common utility duct) หรืออุโมงค์ยูทิลิตี้จะให้บริการกับงานสาธารณูปโภคมากกว่าหนึ่งรายที่เป็นงานบริการที่แตกต่างกันได้ การใช้อุโมงค์ร่วมกันนี้สามารถทำให้องค์กรลดค่าใช้จ่ายของการสร้างและการบำรุงรักษาสาธารณูปโภคของตนเองได้อย่างมาก

ทางสัญจรที่มีหลังคา (อังกฤษ: Covered passageways)

Dark Gate ศตวรรษที่ 19 ใน Esztergom, ฮังการี

สะพานลอยบางครั้งจะถูกสร้างขึ้นเพื่อคร่อมถนนหรือแม่น้ำหรือรถไฟด้วยซุ้มประตูที่ทำจากอิฐหรือเหล็ก จากนั้นก็ปรับระดับพื้นผิวด้วยดิน ในสำนวนของรถไฟ ทางวิ่งในระดับพื้นผิวที่มีการสร้างคร่อมข้างบนปกติจะถูกเรียกว่า "ทางที่มีหลังคา" (อังกฤษ: covered way)

เพิงหิมะ (อังกฤษ: snow shed) เป็นอุโมงค์เทียมชนิดหนึ่งที่สร้างขึ้นเพื่อป้องกันทางรถไฟจากหิมะถล่ม ในทำนองเดียวกัน "อุโมงค์เหล็ก" Stanwell Park ที่นิวเซาธ์เวลส์ บนทางรถไฟสายชายฝั่งตอนใต้ เป็นตัวป้องกันสายทางจากหินถล่ม

ความปลอดภัยและการรักษาความปลอดภัย

อ้างอิง

  1. http://rirs3.royin.go.th/new-search/word-search-all-x.asp
  2. Bickel. (1995). Tunnel engineering handbook, 2nd edition. CBS Publishers.
  3. Powers, P.J. (2007). Construction de-watering and groundwater control. Hoboken, NJ: John Wiley & Sons Inc.
  4. 4.0 4.1 United States Army Corps of Engineers. (1978). Tunnels and shafts in rock. Washington, DC: Department of the Army.
  5. "Capital Projects Funds". Cord.edu. สืบค้นเมื่อ 2013-04-19.
  6. Chan, Sewell (2005-08-03). "$100 Million for a Tunnel. What Tunnel?". The New York Times.
  7. "Encouraging U.S. Infrastructure Investment - Council on Foreign Relations". Cfr.org. สืบค้นเมื่อ 2013-04-19.
  8. "Tunnels & Tunnelling International". Tunnelsonline.info. สืบค้นเมื่อ 2013-04-19.
  9. "The Groene Hart Tunnel". Hslzuid.nl. สืบค้นเมื่อ 2013-04-19.[ลิงก์เสีย]
  10. Johnson, Kirk (December 4, 2012). "Engineering Projects Will Transform Seattle, All Along the Waterfront". The New York Times.
  11. http://i34.tinypic.com/23ixthy.jpg
  12. http://i36.tinypic.com/16k1ahx.jpg
  13. "San Francisco-Oakland Bay Bridge". Bay Area Toll Authority.