ผลต่างระหว่างรุ่นของ "กณิกนันต์"

จากวิกิพีเดีย สารานุกรมเสรี
เนื้อหาที่ลบ เนื้อหาที่เพิ่ม
Luckas-bot (คุย | ส่วนร่วม)
r2.7.1) (โรบอต เพิ่ม: ar, ca, cs, da, de, es, fi, fr, gl, he, it, ja, ko, nl, pl, pt, ro, ru, sl, sq, sr, sv, uk, zh, zh-classical
Tinuviel (คุย | ส่วนร่วม)
ไม่มีความย่อการแก้ไข
บรรทัด 2: บรรทัด 2:


ผู้ก่อตั้ง[[แคลคูลัสกณิกนันต์]] ได้แก่ [[ปิแยร์ เดอ แฟร์มาต์|แฟร์มาต์]], [[ไลบ์นิซ]], [[ไอแซก นิวตัน|นิวตัน]], [[ออยเลอร์]], [[คอชี]] และคนอื่นๆ ได้ทำการคำนวณด้วยแนวคิดกณิกนันต์และสามารถหาผลลัพธ์ที่ถูกต้องได้สำเร็จ
ผู้ก่อตั้ง[[แคลคูลัสกณิกนันต์]] ได้แก่ [[ปิแยร์ เดอ แฟร์มาต์|แฟร์มาต์]], [[ไลบ์นิซ]], [[ไอแซก นิวตัน|นิวตัน]], [[ออยเลอร์]], [[คอชี]] และคนอื่นๆ ได้ทำการคำนวณด้วยแนวคิดกณิกนันต์และสามารถหาผลลัพธ์ที่ถูกต้องได้สำเร็จ

== ประวัติของกณิกนันต์ ==
ก่อนหน้านี้เคยมีการตั้งข้อสังเกตและอภิปรายเกี่ยวกับจำนวนที่เล็กมากๆ โดย[[สำนักศึกษาเอเลียทิคส์]] แต่[[อาร์คิมิดีส]]เป็นคนแรกที่เสนอคำนิยามที่มีตรรกะอย่างจริงจังในงานเขียนเรื่อง ''[[The Method of Mechanical Theorems]]''<ref>Archimedes, ''The Method of Mechanical Theorems''; see [[Archimedes Palimpsest]]</ref> จาก[[คุณสมบัติแบบอาร์คิมิดีส]] นิยามไว้ว่า จำนวน ''x'' จะเป็นจำนวนอนันต์ถ้าสอดคล้องตามเงื่อนไข |x|>1, |x|>1+1, |x|>1+1+1, ... และจะเป็นจำนวนกณิกนันต์ถ้า x≠0 เงื่อนไขคล้ายคลึงกันนี้ใช้ได้กับ 1/x และจำนวนเต็มที่เป็นส่วนกลับด้วย ระบบจำนวนเช่นนี้กล่าวว่ามีคุณสมบัติแบบอาร์คิมิดีสถ้ามันไม่มีสมาชิกที่เป็นจำนวนอนันต์หรือจำนวนกณิกนันต์เลย ในระบบคณิตศาสตร์ของกรีกโบราณ 1 เป็นตัวแทนของความยาวช่วงหนึ่ง ใช้เป็นหน่วยนับอย่างไม่เป็นทางการนัก

นักคณิตศาสตร์ชาวอินเดีย [[Bhāskara II]] (1114–1185)<ref>{{cite journal | last = '''Shukla''' | first = Kripa Shankar | authorlink = | coauthors = | title = Use of Calculus in Hindu Mathematics | journal = Indian Journal of History of Science | volume = 19 | issue = | pages = 95–104 |date=1984 | url = | doi = | id = | accessdate = | postscript = . }}</ref>{{Verify source|date=September 2010}} และชาวเปอร์เซีย [[Sharaf al-Dīn al-Tūsī]] (1135&ndash;1213)<ref>{{Cite book | last1=Rashed | first1=Roshdi | last2=Armstrong | first2=Angela | year=1994 | title=The Development of Arabic Mathematics | publisher=[[Springer Science+Business Media|Springer]] | isbn=0792325656 | pages=342–3 | postscript=.}}</ref><ref name=Berggren>J. L. Berggren (1990). "Innovation and Tradition in Sharaf al-Din al-Tusi's Muadalat", ''Journal of the American Oriental Society'' '''110''' (2), p. 304&ndash;309.</ref>{{Verify source|date=September 2010}} ได้นำค่ากณิกนันต์มาใช้ประโยชน์ เมื่อต่างก็ค้นพบหลักการสำคัญของ[[อนุพันธ์]] (derivative) นอกจากนี้ โรงเรียนดาราศาสตร์และคณิตศาสตร์ Kerala ซึ่งตั้งอยู่ระหว่างคริสต์ศตวรรษที่ 14-16 ได้นำเอาคุณสมบัติสำคัญของ[[ลิมิต]]มาใช้เพื่อคำนวณการขยายตัวของ[[อนุกรม]]หลายชนิด<ref name=roy>Roy, Ranjan. 1990. "Discovery of the Series Formula for <math> \pi </math> by Leibniz, Gregory, and Nilakantha." ''Mathematics Magazine'' (Mathematical Association of America) 63(5):291&ndash;306.</ref>


==อ้างอิง==
==อ้างอิง==
{{รายการอ้างอิง}}
{{Refbegin}}
{{Refbegin}}
* B. Crowell, [http://www.lightandmatter.com/calc/ "Calculus"] (2003)
* B. Crowell, [http://www.lightandmatter.com/calc/ "Calculus"] (2003)
บรรทัด 9: บรรทัด 15:
* J. Keisler, [http://www.math.wisc.edu/~keisler/calc.html "Elementary Calculus"] (2000) University of Wisconsin
* J. Keisler, [http://www.math.wisc.edu/~keisler/calc.html "Elementary Calculus"] (2000) University of Wisconsin
* K. Stroyan [http://www.math.uiowa.edu/%7Estroyan/InfsmlCalculus/InfsmlCalc.htm "Foundations of Infinitesimal Calculus"] (1993)
* K. Stroyan [http://www.math.uiowa.edu/%7Estroyan/InfsmlCalculus/InfsmlCalc.htm "Foundations of Infinitesimal Calculus"] (1993)
*[[Keith Stroyan|Stroyan, K. D.]]; [[Wilhelmus Luxemburg|Luxemburg, W. A. J.]] Introduction to the theory of infinitesimals. Pure and Applied Mathematics, No. 72. Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1976.
* [[Keith Stroyan|Stroyan, K. D.]]; [[Wilhelmus Luxemburg|Luxemburg, W. A. J.]] Introduction to the theory of infinitesimals. Pure and Applied Mathematics, No. 72. Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1976.
* [[Robert Goldblatt]] (1998) [http://www.springer.com/west/home/generic/order?SGWID=4-40110-22-1590889-0 "Lectures on the hyperreals"] Springer.
* [[Robert Goldblatt]] (1998) [http://www.springer.com/west/home/generic/order?SGWID=4-40110-22-1590889-0 "Lectures on the hyperreals"] Springer.
* [http://www.aslonline.org/books-lnl_25.html "Nonstandard Methods and Applications in Mathematics"] (2007) Lecture Notes in Logic 25, Association for Symbolic Logic.
* [http://www.aslonline.org/books-lnl_25.html "Nonstandard Methods and Applications in Mathematics"] (2007) Lecture Notes in Logic 25, Association for Symbolic Logic.
* [http://www.springer.com/west/home/springerwiennewyork/mathematics?SGWID=4-40638-22-173705722-0 "The Strength of Nonstandard Analysis"] (2007) Springer.
* [http://www.springer.com/west/home/springerwiennewyork/mathematics?SGWID=4-40638-22-173705722-0 "The Strength of Nonstandard Analysis"] (2007) Springer.
*{{Cite journal|doi=10.1007/BF00329867|authorlink=Detlef Laugwitz|last=Laugwitz|first=D.|year=1989|title=Definite values of infinite sums: aspects of the foundations of infinitesimal analysis around 1820|journal=Arch. Hist. Exact Sci.|volume=39|issue=3|pages=195&ndash;245|postscript=<!--None-->}}.
*{{Cite journal|doi=10.1007/BF00329867|authorlink=Detlef Laugwitz|last=Laugwitz|first=D.|year=1989|title=Definite values of infinite sums: aspects of the foundations of infinitesimal analysis around 1820|journal=Arch. Hist. Exact Sci.|volume=39|issue=3|pages=195&ndash;245|postscript=<!--None-->}}.
* Yamashita, H.: Comment on: "Pointwise analysis of scalar Fields: a nonstandard approach" [J. Math. Phys. 47 (2006), no. 9, 092301; 16 pp.]. J. Math. Phys. 48 (2007), no. 8, 084101, 1 page.
* Yamashita, H.: Comment on: "Pointwise analysis of scalar Fields: a nonstandard approach" [J. Math. Phys. 47 (2006), no. 9, 092301; 16 pp.]. J. Math. Phys. 48 (2007), no. 8, 084101, 1 page.

รุ่นแก้ไขเมื่อ 14:11, 15 เมษายน 2554

กณิกนันต์ (อังกฤษ: Infinitesimals) คือคำศัพท์ใช้อธิบายแนวคิดของวัตถุที่มีขนาดเล็กมากๆ จนไม่สามารถมองเห็นหรือตรวจวัดได้ ถ้ากล่าวโดยทั่วไป วัตถุกณิกนันต์คือวัตถุที่มีขนาดเล็กจนไม่สามารถหาวิธีตรวจวัดได้ แต่ก็ไม่ได้เป็นศูนย์ มันเล็กมากจนยากจะแยกจากศูนย์ได้ด้วยวิธีการใดๆ ที่มีอยู่

ผู้ก่อตั้งแคลคูลัสกณิกนันต์ ได้แก่ แฟร์มาต์, ไลบ์นิซ, นิวตัน, ออยเลอร์, คอชี และคนอื่นๆ ได้ทำการคำนวณด้วยแนวคิดกณิกนันต์และสามารถหาผลลัพธ์ที่ถูกต้องได้สำเร็จ

ประวัติของกณิกนันต์

ก่อนหน้านี้เคยมีการตั้งข้อสังเกตและอภิปรายเกี่ยวกับจำนวนที่เล็กมากๆ โดยสำนักศึกษาเอเลียทิคส์ แต่อาร์คิมิดีสเป็นคนแรกที่เสนอคำนิยามที่มีตรรกะอย่างจริงจังในงานเขียนเรื่อง The Method of Mechanical Theorems[1] จากคุณสมบัติแบบอาร์คิมิดีส นิยามไว้ว่า จำนวน x จะเป็นจำนวนอนันต์ถ้าสอดคล้องตามเงื่อนไข |x|>1, |x|>1+1, |x|>1+1+1, ... และจะเป็นจำนวนกณิกนันต์ถ้า x≠0 เงื่อนไขคล้ายคลึงกันนี้ใช้ได้กับ 1/x และจำนวนเต็มที่เป็นส่วนกลับด้วย ระบบจำนวนเช่นนี้กล่าวว่ามีคุณสมบัติแบบอาร์คิมิดีสถ้ามันไม่มีสมาชิกที่เป็นจำนวนอนันต์หรือจำนวนกณิกนันต์เลย ในระบบคณิตศาสตร์ของกรีกโบราณ 1 เป็นตัวแทนของความยาวช่วงหนึ่ง ใช้เป็นหน่วยนับอย่างไม่เป็นทางการนัก

นักคณิตศาสตร์ชาวอินเดีย Bhāskara II (1114–1185)[2][ต้องการตรวจสอบความถูกต้อง] และชาวเปอร์เซีย Sharaf al-Dīn al-Tūsī (1135–1213)[3][4][ต้องการตรวจสอบความถูกต้อง] ได้นำค่ากณิกนันต์มาใช้ประโยชน์ เมื่อต่างก็ค้นพบหลักการสำคัญของอนุพันธ์ (derivative) นอกจากนี้ โรงเรียนดาราศาสตร์และคณิตศาสตร์ Kerala ซึ่งตั้งอยู่ระหว่างคริสต์ศตวรรษที่ 14-16 ได้นำเอาคุณสมบัติสำคัญของลิมิตมาใช้เพื่อคำนวณการขยายตัวของอนุกรมหลายชนิด[5]

อ้างอิง

  1. Archimedes, The Method of Mechanical Theorems; see Archimedes Palimpsest
  2. Shukla, Kripa Shankar (1984). "Use of Calculus in Hindu Mathematics". Indian Journal of History of Science. 19: 95–104. {{cite journal}}: Cite ไม่รู้จักพารามิเตอร์ว่างเปล่า : |coauthors= (help)CS1 maint: postscript (ลิงก์)
  3. Rashed, Roshdi; Armstrong, Angela (1994). The Development of Arabic Mathematics. Springer. pp. 342–3. ISBN 0792325656.{{cite book}}: CS1 maint: postscript (ลิงก์)
  4. J. L. Berggren (1990). "Innovation and Tradition in Sharaf al-Din al-Tusi's Muadalat", Journal of the American Oriental Society 110 (2), p. 304–309.
  5. Roy, Ranjan. 1990. "Discovery of the Series Formula for by Leibniz, Gregory, and Nilakantha." Mathematics Magazine (Mathematical Association of America) 63(5):291–306.