ผลต่างระหว่างรุ่นของ "ดวงอาทิตย์"

จากวิกิพีเดีย สารานุกรมเสรี
เนื้อหาที่ลบ เนื้อหาที่เพิ่ม
MelancholieBot (คุย | ส่วนร่วม)
โรบอต เพิ่ม: stq:Sunne
บรรทัด 353: บรรทัด 353:


== ความเชื่อของมนุษย์ต่อดวงอาทิตย์ ==
== ความเชื่อของมนุษย์ต่อดวงอาทิตย์ ==
ดวงอาทิตย์ เป็นสิ่งบูชาของชาวโลกมาแต่โบณ ชาวกรีกโบราณเชื่อว่า[[อพอลโล]] เป็น เทพแห่งดวงอาทิตย์ ชาวอียิตป์โบราณ ถือ[[เทพรา]] เป็นเทพเจ้าแห่งดวงอาทิตย์เช่นกัน รวมถึงโหรศาสตร์ไทยมี [[พระอาทิตย์]] เป็นเทวดาประจำ
ดวงอาทิตย์ เป็นสิ่งบูชาของชาวโลกมาแต่โบราณ ชาวกรีกโบราณเชื่อว่า[[อพอลโล]] เป็น เทพแห่งดวงอาทิตย์ ชาวอียิตป์โบราณ ถือ[[เทพรา]] เป็นเทพเจ้าแห่งดวงอาทิตย์เช่นกัน รวมถึงโหรศาสตร์ไทยมี [[พระอาทิตย์]] เป็นเทวดาประจำ


== อ้างอิง ==
== อ้างอิง ==

รุ่นแก้ไขเมื่อ 17:57, 5 ตุลาคม 2552

ดวงอาทิตย์ หรือ
ดวงอาทิตย์
ข้อมูลจากการสังเกต
ระยะห่างเฉลี่ย
วัดจากโลก
×101.496 เมตร
(×109.295 ไมล์)
(8.31 นาทีแสง)
ความสว่างปรากฏ  (V) −26.74m [1]
ความสว่างสัมบูรณ์ 4.83m [1]
สเปกตรัม G2V
ลักษณะเฉพาะในวงโคจร
ระยะห่างเฉลี่ย
จากแกน ดาราจักรทางช้างเผือก
×10~2.5 เมตร
(×108.2 ไมล์)
(26,000 ปีแสง)
คาบการโคจรครบรอบดาราจักร ×102.25–2.50 ปี
อัตราเร็วในวงโคจร ×102.17 เมตรต่อวินาที
(×107.12 ฟุตต่อวินาที) (โคจรรอบศูนย์กลางดาราจักรทางช้างเผือก)
×102 เมตรต่อวินาที
(×106.6 ฟุตต่อวินาที) (สัมพัทธ์กับดาวดวงอื่น)
ลักษณะเฉพาะทางฟิสิกส์
เส้นผ่านศูนย์กลางเฉลี่ย ×101.392 เมตร [1]
(×108.649 ไมล์)
(เทียบกับโลก 109 ดวง)
รัศมีที่เส้นศูนย์สูตร ×106.955 เมตร [2]
ความยาวเส้นศูนย์สูตร ×104.379 เมตร [2]
(×102.717 ไมล์)
ความแป้น ×109
พื้นที่ผิว ×106.088 ตารางเมตร [2]
(×102.35 ตารางไมล์)
(11,900 เท่าของโลก)
ปริมาตร ×101.4122 ลูกบาศก์เมตร [2]
(×103.38 ลูกบาศก์ไมล์)
(1,300,000 เท่าของโลก)
มวล ×101.9891 กิโลกรัม[1]
(×102.191874 ตัน)
(332,946 เท่าของโลก)
ความหนาแน่นเฉลี่ย 1,409 กิโลกรัมต่อลูกบาศก์เมตร [2]
(88 ปอนด์ต่อลูกบาศก์ฟุต)
ความเร่งโน้มถ่วงที่ผิวบริเวณเส้นศูนย์สูตร 274.0 m/s2 [1] (27.94 เท่าของโลก)
ความเร็วหลุดพ้นวัดจากพื้นผิว 617.7 กิโลเมตรต่อวินาที [2]
383.72 ไมล์ต่อวินาที
(55 เท่าของโลก)
อุณหภูมิพื้นผิว 5,778 เคลวิน [1]
(9,953 องศาฟาเรนไฮต์)
อุณหภูมิโคโรนา 5 ล้านเคลวิน
(9,000,000 องศาฟาเรนไฮต์)
อุณหภูมิที่
แกน
~15.71 ล้านเคลวิน [1]
(24,500,000 องศาฟาเรนไฮต์)
กำลังส่องสว่าง (Lsol) ×103.846 วัตต์ [1]
×10~3.75 ลูเมน
(~98 ลูเมนต่อวัตต์)
ความเข้มของการส่องสว่างเฉลี่ย   (Isol) ×102.009 W/m2 sr
ลักษณะเฉพาะของการหมุน
ความเอียงวงโคจร 7.25° [1]
(กับระนาบสุริยวิถี)
67.23°
(กับระนาบดาราจักร)
ไรต์แอสเซนชัน
ของขั้วเหนือ[3]
286.13°
(19 ชั่วโมง 4 นาที 30 วินาที)
เดคลิเนชัน
ของขั้วเหนือ
+63.87°
(63°52' เหนือ)
คาบการหมุนดาราคติ
(ที่ละติจูด 16°)
25.38 วัน [1]
(25 วัน 9 ชั่วโมง 7 นาที 13 วินาที) [3]
(ที่เส้นศูนย์สูตร) 25.05 วัน [1]
(ที่ขั้ว) 34.3 วัน [1]
อัตราเร็วของการหมุน
(ณ เส้นศูนย์สูตร)
7,284 กิโลเมตรต่อชั่วโมง
(4,530 ไมล์ต่อชั่วโมง)
ส่วนประกอบในโฟโตสเฟียร์โดยมวล
ไฮโดรเจน 73.46 %
ฮีเลียม 24.85 %
ออกซิเจน 0.77 %
คาร์บอน 0.29 %
เหล็ก 0.16 %
กำมะถัน 0.12 %
นีออน 0.12 %
ไนโตรเจน 0.09 %
ซิลิกอน 0.07 %
แมกนีเซียม 0.05 %
ข้อมูลอาจเปลี่ยนแปลงได้หากมีการค้นพบใหม่

ดวงอาทิตย์ เป็นดาวฤกษ์ที่เป็นศูนย์กลางของระบบสุริยะของเรา ดาวเคราะห์ ดาวเคราะห์แคระ ดาวเคราะห์น้อย และดาวหาง ล้วนแล้วแต่โคจรรอบดวงอาทิตย์ทั้งสิ้น ดวงอาทิตย์เป็นดาวฤกษ์ที่สำคัญยิ่งต่อโลก เช่น ให้พลังงานแก่พืชในรูปของแสง และพืชก็เปลี่ยนแสงให้เป็นพลังงานในการตรึงแก๊สคาร์บอนไดออกไซด์ให้เป็นน้ำตาล ตลอดจนทำให้โลกมีสภาวะอากาศหลากหลาย เอื้อต่อการดำรงชีวิต

ดวงอาทิตย์ประกอบด้วยไฮโดรเจนอยู่ร้อยละ 74 โดยมวล ฮีเลียมร้อยละ 25 โดยมวล และธาตุอื่นๆ ในปริมาณเล็กน้อย ดวงอาทิตย์จัดอยู่ในสเปกตรัม G2V ซึ่ง G2 หมายความว่าดวงอาทิตย์มีอุณหภูมิพื้นผิวประมาณ 5,780 เคลวิน (ประมาณ 5,515 องศาเซลเซียส หรือ 9,940 องศาฟาเรนไฮ) ดวงอาทิตย์จึงมีสีขาว แต่เห็นบนโลกเป็นสีเหลือง เนื่องจากการกระเจิงของแสง ส่วน V (เลข 5) บ่งบอกว่าดวงอาทิตย์อยู่ในลำดับหลัก ผลิตพลังงานโดยการหลอมไฮโดรเจนให้เป็นฮีเลียม และอยู่ในสภาพสมดุล ไม่ยุบตัวหรือขยายตัว

ดวงอาทิตย์อยู่ห่างจากศูนย์กลางดาราจักรทางช้างเผือกเป็นระยะทางโดยประมาณ 26,000 ปีแสง ใช้เวลาโคจรครบรอบดาราจักรประมาณ 225-250 ล้านปี มีอัตราเร็วในวงโคจร 215 กิโลเมตรต่อวินาที หรือ 1 ปีแสง ทุกๆ 1,400 ปี[4]

ภาพรวมเกี่ยวกับดวงอาทิตย์

ดวงอาทิตย์จัดเป็นดาวฤกษ์รุ่นที่ 3 ซึ่งสันนิษฐานกันว่า ก่อตัวขึ้นโดยอิทธิพลของมหานวดาราที่อยู่ใกล้ๆ[5] เพราะมีการค้นพบธาตุหนัก เช่น ทองคำและยูเรเนียมในปริมาณมาก ซึ่งธาตุเหล่านี้อาจเกิดจากปฏิกิริยานิวเคลียร์ชนิดดูดความร้อนขณะที่เกิดมหานวดารา หรือการดูดซับนิวตรอนในดาวฤกษ์รุ่นที่สองซึ่งมีมวลมาก

ดวงอาทิตย์ เป็นดาวฤกษ์ที่ให้พลังงานแก่โลก ซึ่งปริมาณของพลังงานนี้ต่อหนึ่งหน่วยพื้นที่เราเรียกว่า ค่าคงตัวสุริยะ (solar constant) บนโลก (หรือระยะ 1 หน่วยดาราศาสตร์จากดวงอาทิตย์) มีค่าคงตัวสุริยะโดยเฉลี่ยที่ 1,370 วัตต์ต่อตารางเมตร ทว่าพลังงานที่โลกได้รับมีค่าน้อยลง ด้วยเพราะบรรยากาศโลกได้สกัดกั้นออกไป จนเหลือเพียง 1,000 วัตต์ต่อตารางเมตร เมื่อดวงอาทิตย์อยู่เหนือศีรษะและท้องฟ้าโปร่ง ทว่ายังอันตรายอยู่มาก หากแต่ธรรมชาติได้ให้พืชทำการดูดพลังงานเหล่านี้ไปใช้ตรึงแก๊สคาร์บอนไดออกไซด์ให้เป็นชีวมวล และเมื่อพืชเหล่านั้นตายลง ก็เกิดกระบวนการทับถมจมลงไปใต้พื้นดินจนเกิดเป็นถ่านหินและน้ำมัน นอกจากนี้ เราก็สามารถเปลี่ยนจุดนี้จากวิกฤตให้เป็นโอกาส โดยการนำเซลล์สุริยะมาติดตั้งกลางแจ้ง เพื่อแปลงพลังงานแสงอาทิตย์ให้เป็นพลังงานไฟฟ้าต่อไป

แม้รังสีอัลตราไวโอเลตจากดวงอาทิตย์จะเป็นตัวการที่ทำให้ผิวหนังคล้ำเสีย แต่ก็ยังมีคุณสมบัติในการกำจัดแบคทีเรีย ซึ่งทำให้เรานิยมตากอาหารบางชนิดกลางแดดเพื่อให้เก็บได้นานขึ้น และยังเป็นตัวช่วยสังเคราะห์วิตามินดีด้วย รังสีอัลตราไวโอเลตส่วนมากถูกสกัดกั้นโดยชั้นบรรยากาศ และทะลุลงมายังพื้นโลก บนพื้นโลกที่ละติจูดต่างกัน ความเข้มของรังสียูวีก็มีความต่างกัน นี่จึงเป็นเหตุผลที่ทำให้มีการกระจายของประชากรมนุษย์สีผิวต่างๆ กัน[6]

ดวงอาทิตย์จัดว่าเป็นดาวฤกษ์ที่มีอำนาจแม่เหล็กมากดวงหนึ่ง ซึ่งอำนาจแม่เหล็กนี้เองที่ทำให้เกิดจุดดำบนผิวดวงอาทิตย์ เพลิงสุริยะ (solar flare) และการเปลี่ยนแปรของลมสุริยะ ที่สังเกตได้บนโลกก็คือ เกิดแสงเหนือแสงใต้ และเกิดการติดขัดของระบบสื่อสาร ทว่านักดาราศาสตร์เชื่อว่าสิ่งนี้มีบทบาทสำคัญในวิวัฒนาการของระบบสุริยะ

ถึงแม้ว่าดวงอาทิตย์จะได้รับการศึกษาโดยนักวิทยาศาสตร์อย่างจริงจัง ทว่าคำถามที่ไม่สามารถตอบได้คือ ทำไมชั้นบรรยากาศรอบนอกดวงอาทิตย์ (โคโรนา) จึงมีอุณหภูมิสูงกว่า 1 ล้านเคลวิน ขณะที่ส่วนที่เรามองเห็นดวงอาทิตย์ (โฟโตสเฟียร์) กลับมีอุณหภูมิต่ำกว่า 6,000 เคลวิน ในขณะนี้นักวิทยาศาสตร์กำลังศึกษาเกี่ยวกับฟิสิกส์ว่าด้วยเพลิงสุริยะและพวยเพลิงสุริยะ (prominence) วัฏจักรจุดดำบนดวงอาทิตย์ ต้นกำเนิดของลมสุริยะ และกิจกรรมทางแม่เหล็ก เช่น การเกิดสนามแม่เหล็ก การเกิดเส้นแรงแม่เหล็ก ระหว่างชั้นโครโมสเฟียร์กับชั้นโคโรนา

ปัจจุบันและอนาคตของดวงอาทิตย์

ตามการศึกษาแบบจำลองคอมพิวเตอร์ว่าด้วยวัฏจักรดาวฤกษ์ นักดาราศาสตร์สันนิษฐานว่าดวงอาทิตย์มีอายุประมาณ 4,570 ล้านปี[7] ในขณะนี้ดวงอาทิตย์กำลังอยู่ในลำดับหลัก ทำการหลอมไฮโดรเจนให้เป็นฮีเลียม โดยทุกๆ วินาที มวลสารของดวงอาทิตย์มากกว่า 4 ล้านตันถูกเปลี่ยนเป็นพลังงาน ดวงอาทิตย์ใช้เวลาโดยประมาณ 1 หมื่นล้านปีในการดำรงอยู่ในลำดับหลัก

เมื่อไฮโดรเจนซึ่งเป็นเชื้อเพลิงของดวงอาทิตย์หมดลง วาระสุดท้ายของดวงอาทิตย์ก็มาถึง (คือการพ้นไปจากลำดับหลัก) โดยดวงอาทิตย์จะเริ่มพบกับจุดจบคือการแปรเปลี่ยนไปเป็นดาวยักษ์แดงภายใน 4-5 พันล้านปี ผิวนอกของดวงอาทิตย์ขยายตัวออกไป ส่วนแกนนั้นยุบตัวลงและร้อนขึ้นสลับกับเย็นลง มีการหลอมฮีเลียมเป็นคาร์บอนและออกซิเจนที่อุณหภูมิราว 100 ล้านเคลวิน จากสถานการณ์ข้างต้นดูเหมือนว่าดวงอาทิตย์จะกลืนกินโลกให้หลอมลงไปเป็นเนื้อเดียวกัน แต่จากรายงานวิจัยฉบับหนึ่ง[8]ได้ศึกษาพบว่าวงโคจรของโลกจะตีตัวออกห่างดวงอาทิตย์เพราะมวลของดวงอาทิตย์ได้สูญเสียไป จนแรงดึงดูระหว่างมวลมีค่าลดลง แต่ถึงกระนั้น น้ำทะเลก็ถูกความร้อนจากดวงอาทิตย์เผาผลาญจนระเหยสิ้นไปในอวกาศ และบรรยากาศโลกก็อันตรธานไปจนไม่เอื้อแก่ชีวิต

แผนภาพชีวิตดวงอาทิตย์

หลังจากที่ดวงอาทิตย์ได้ผ่านสภาพการเป็นดาวยักษ์แดงแล้ว อุณหภูมิจากปฏิกิริยาการหลอมฮีเลียมที่เพิ่มสลับกับลงภายในแกน ก็จะเป็นตัวการให้ผิวดวงอาทิตย์ด้านนอกผละตัวออกจากแกน เกิดเป็นเนบิวลาดาวเคราะห์ แล้วอันตรธานไปในความมืดมิดของอวกาศ และเป็นวัสดุสำหรับสร้างดาวฤกษ์และระบบสุริยะรุ่นถัดไป ส่วนแกนที่เหลืออยู่ก็จะกลายเป็นดาวแคระขาวที่ร้อนจัดและมีแสงจางมาก ก่อนจะดับลงกลายเป็นดาวแคระดำ จากทั้งหมดที่กล่าวมานี้คือชีวิตของดาวฤกษ์ที่มีมวลน้อยถึงปานกลาง[8][9]

โครงสร้าง

ดวงอาทิตย์เป็นวัตถุที่ใหญ่ที่สุดในระบบสุริยะ มีมวลคิดเป็นร้อยละ 99 ของระบบสุริยะ ดวงอาทิตย์เป็นดาวฤกษ์ที่มีรูปทรงเกือบเป็นทรงกลม โดยมีความแบนที่ขั้วเพียงหนึ่งในเก้าล้าน[10] ซึ่งหมายความว่าความแตกต่างของเส้นผ่านศูนย์กลางที่ขั้วกับเส้นผ่านศูนย์กลางที่เส้นศูนย์สูตรมีเพียง 10 กิโลเมตร จากการที่ดวงอาทิตย์มีเฉพาะส่วนที่เป็นพลาสมา ไม่มีส่วนที่เป็นของแข็ง ทำให้อัตราเร็วของการหมุนรอบตัวเองในแต่ละส่วนมีความต่างกัน เช่นที่เส้นศูนย์สูตรจะหมุนเร็วกว่าที่ขั้ว ที่เส้นศูนย์สูตรของดวงอาทิตย์มีคาบการหมุนรอบตัวเอง 25 วัน ส่วนที่ขั้วมีคาบ 35 วัน แต่เมื่อสังเกตบนโลกแล้วจะพบว่าคาบของการหมุนรอบตัวเองที่เส้นศูนย์สูตรของดวงอาทิตย์คือ 28 วัน

ดวงอาทิตย์มีความหนาแน่นมากที่สุดบริเวณแกน ซึ่งเป็นแหล่งผลิตพลังงาน และมีค่าน้อยลงเกือบเป็นรูปเอ็กโพเนนเชียลตามระยะทางที่ห่างออกมาจากแกน และแม้ว่าภายในดวงอาทิตย์นั้นจะไม่สามารถมองเห็นได้ แต่นักวิทยาศาสตร์ก็สามารถศึกษาภายในได้ผ่านทางการใช้คลื่นสะเทือนในดวงอาทิตย์

แกน

ส่วนแกนของดวงอาทิตย์สันนิษฐานว่ามีรัศมีเป็น 0.2 เท่าของรัศมีดวงอาทิตย์ ความหนาแน่นประมาณ 150,000 กิโลกรัมต่อลูกบาศก์เมตร หรือ 150 เท่าของความหนาแน่นของน้ำบนโลก อุณหภูมิประมาณ 13,600,000 เคลวิน ตลอดชีวิตส่วนใหญ่ของดวงอาทิตย์ ภายในแกนจะมีปฏิกิริยาฟิวชันลูกโซ่ โปรตอน-โปรตอน ซึ่งเปลี่ยนไฮโดรเจนเป็นฮีเลียม พลังงานที่ได้นี้ทำให้ส่วนที่เหลือของดวงอาทิตย์สุกสว่างและเปล่งแสง

ทุกๆ วินาที จะมีนิวเคลียสของไฮโดรเจน ×103.4 ตัว ถูกแปรรูปเป็นฮีเลียม ผลิตพลังงานได้ ×10383 จูล หรือเทียบได้กับระเบิดไตรไนโตรโทลูอีน (TNT) ถึง ×109.15 กิโลกรัม พลังงานจากแกนของดวงอาทิตย์ใช้เวลานานมากในการขึ้นสู่พื้นผิว อย่างมากเป็น 50 ล้านปี[11] อย่างน้อยเป็น 17,000 ปี[12]เพราะโฟตอนพลังงานสูง (รังสีเอกซ์และรังสีแกมมา) ถูกดูดกลืนไปในพลาสมา แล้วเปล่งพลังงานออกมาสลับกันเรื่อยๆ ทุกๆ ระยะไม่กี่มิลลิเมตร

เขตแผ่รังสีความร้อน

ภาพประกอบโครงสร้างของดวงอาทิตย์

ในส่วนของเขตแผ่รังสีความร้อน (radiation zone) ซึ่งอยู่ในช่วง 0.2 ถึง 0.7 ส่วนของรัศมีดวงอาทิตย์ ในชั้นนี้ไม่มีการพาความร้อน (convection) เพราะอัตราความแตกต่างของอุณหภูมิเทียบกับระยะความสูงน้อยกว่าอัตราการเปลี่ยนอุณหภูมิตามความสูงแบบอะเดียแบติก (adiabatic lapse rate) พลังงานในส่วนนี้ถูกนำออกมาภายนอกช้ามากดังที่ได้กล่าวไว้ก่อนแล้ว

เขตพาความร้อน

ในส่วนของเขตพาความร้อน (convection zone) ซึ่งอยู่บริเวณผิวนอกที่เหลือ เป็นส่วนที่พลังงานถูกถ่ายเทผ่านแท่งความร้อน (heat column) โดยเนื้อสารที่ร้อนและมีพลังงานเริ่มต้นจากด้านล่าง แล้วไหลขึ้นด้านบนจนถึงผิว จากนั้นถ่ายเทความร้อนและกลับลงไปใหม่ แท่งความร้อนสามารถสังเกตได้จาก “เกล็ด” บนภาพถ่ายผิวดวงอาทิตย์

โฟโตสเฟียร์

ในส่วนของโฟโตสเฟียร์ (photosphere) แปลว่า ทรงกลมแห่งแสง ซึ่งเป็นส่วนที่เรามองเห็นดวงอาทิตย์ แสงสว่างที่เปล่งในดวงอาทิตย์นั้นเกิดจากอิเล็กตรอนชนกับอะตอมไฮโดรเจนเกิดเป็น H-[13][14] เหนือชั้นนี้ แสงอาทิตย์ก็จะถูกปลดปล่อยออกมา และมีอุณหภูมิต่ำลงตามความสูงที่มากขึ้น จนทำให้สังเกตเห็นรอยมัวตรงขอบดวงอาทิตย์ในภาพถ่าย (ดังภาพถ่ายด้านบน)

บรรยากาศ

บรรยากาศของดวงอาทิตย์ประกอบด้วย 5 ชั้น ได้แก่ ชั้นอุณหภูมิต่ำสุด (temperature minimum) โครโมสเฟียร์ (chromosphere) เขตเปลี่ยนผ่าน (transition region) โคโรนา (corona) และเฮลิโอสเฟียร์ (heliosphere) ตามลำดับจากต่ำไปสูง

ชั้นแรก ชั้นอุณหภูมิต่ำสุด มีอุณหภูมิประมาณ 4,000 เคลวิน และหนา 500 กิโลเมตร ชั้นถัดไปคือโครโมสเฟียร์ ซึ่งแปลว่ารงคมณฑล หรือทรงกลมแห่งสี เหตุที่เรียกชื่อนี้ก็เพราะเห็นเป็นแสงสีแวบขณะเกิดสุริยุปราคา ชั้นนี้หนา 2,000 กิโลเมตร มีอุณหภูมิสูงถึง 100,000 เคลวิน ชั้นต่อไปเป็นเขตเปลี่ยนผ่านซึ่งอุณหภูมิอาจสูงถึงล้านเคลวิน และยิ่งสูงขึ้นไปอีกในชั้นโคโรนา ทำให้สิ่งนี้เป็นปัญหาคาใจนักวิทยาศาสตร์ ซึ่งก็สันนิษฐานว่าอาจเกิดจากการต่อเชื่อมทางแม่เหล็ก (magnetic connection) ชั้นที่เหลือชั้นสุดท้ายคือ เฮลิโอสเฟียร์ หรือสุริยมณฑล คือชั้นที่อำนาจของลมสุริยะสามารถไปถึง ซึ่งอาจมากกว่า 20 หน่วยดาราศาสตร์ (20 เท่าของระยะทางจากโลกถึงดวงอาทิตย์)

ประวัติศาสตร์เกี่ยวกับการสังเกตดวงอาทิตย์

ความเข้าใจในอดีต

มนุษย์ในอดีตรู้เกี่ยวกับดวงอาทิตย์เพียงเป็นลูกไฟกลม ขึ้นจากท้องฟ้าในทิศตะวันออก ทำให้เกิดกลางวันและตกลงไปทางทิศตะวันตก ทำให้เกิดกลางคืน ดวงอาทิตย์ให้ทั้งแสงสว่าง ความร้อน ตลอดจนความหวังในจิตใจ จนมีการนับถือดวงอาทิตย์ให้เป็นเทพเจ้า มีการบูชายัญถวายเทพพระอาทิตย์ของชาวอัซเตก (Aztec) ซึ่งปัจจุบันอยู่ในประเทศเม็กซิโก นอกเหนือจากนี้ มนุษย์ในสมัยโบราณยังได้สร้างสิ่งประดิษฐ์สำหรับบอกตำแหน่งของดวงอาทิตย์ในวันอุตรายัน (Summer solstice) ซึ่งเป็นวันที่กลางวันยาวที่สุดในรอบปี คือประมาณวันที่ 24 มิถุนายน เช่นที่เสาหินสโตนเฮนจ์ ในประเทศอังกฤษ และพีระมิดเอลกัสตีโย (El Castillo) ประเทศเม็กซิโก

การพัฒนาแนวความคิดสมัยใหม่

ต่อมานักปราชญ์ชาวกรีกชื่อ อะนักซากอรัส (Anaxagoras) ได้เสนอว่า ดวงอาทิตย์เป็นลูกไฟกลม ไม่ได้เป็นพระอาทิตย์ทรงพาหนะ ทำให้เขาต้องโทษประหารชีวิตในเวลาต่อมา ต่อมามีการสันนิษฐานว่าเอราโตสเทเนส) ได้วัดระยะห่างจากโลกไปดวงอาทิตย์ได้เที่ยงตรงเป็นคนแรกในช่วงศตวรรษที่ 3 ก่อนคริสตกาล ซึ่งวัดได้ 149 ล้านกิโลเมตร ใกล้เคียงกับที่ยอมรับในปัจจุบัน

ในเวลาต่อมา ชาวกรีกโบราณและชาวอินเดียโบราณตั้งสมมติฐาน โลกโคจรรอบดวงอาทิตย์ และต่อมาก็ได้รับการพิสูจน์โดยนิโคเลาส์ โคเปอร์นิคัสในช่วงศตวรรษที่ 16 ต่อมาทอมัส แฮร์ริออต (Thomas Harriot) กาลิเลโอ กาลิเลอิ และนักดาราศาสตร์คนอื่นๆ สังเกตพบจุดดำบนดวงอาทิตย์ โดยกาลิเลโอเสนอว่าจุดดำบนดวงอาทิตย์คือจุดที่เกิดบนผิวดวงอาทิตย์โดยตรง มิได้เป็นวัตถุเคลื่อนที่มาบัง[15] ในปี พ.ศ. 2215 โจวันนี คาสซินี (Giovanni Cassini) นักดาราศาสตร์ชาวอิตาลี และชอง รีเช (Jean Richer) นักดาราศาสตร์ชาวฝรั่งเศส ได้หาระยะทางจากโลกไปดาวอังคาร และอาจจะสามารถหาระยะทางไปดวงอาทิตย์ได้หลังจากนั้น ไอแซก นิวตัน ได้สังเกตดวงอาทิตย์โดยให้แสงดวงอาทิตย์ผ่านปริซึม เขาพบว่าประกอบขึ้นด้วยหลายๆ แสงสี นั่นคือสิ่งที่เกิดขึ้นในรุ้งกินน้ำ[16]ต่อมาวิลเลียม เฮอร์เชล ได้ค้นพบการแผ่รังสีอินฟราเรดในช่วงใต้แดงจากดวงอาทิตย์ [17]เมื่อเทคโนโลยีสเปกตรัมก้าวหน้า โยเซฟ ฟอน เฟราน์โฮเฟอร์ (Joseph von Fraunhofer) ได้ค้นพบเส้นดูดกลืนในสเปกตรัมของดวงอาทิตย์ ซึ่งต่อมาเรียกว่าเส้นเฟราน์โฮเฟอร์ (Fraunhofer line)

ช่วงแรกๆ ของยุคใหม่ทางวิทยาศาสตร์ ปัญหาที่คาใจนักวิทยาศาสตร์ก็คือดวงอาทิตย์เอาพลังงานมาจากที่ใด ลอร์ดเคลวิน (วิลเลียม ทอมสัน) และแฮร์มันน์ ฟอน เฮล์มโฮลตซ์ (Hermann von Helmholtz) ได้เสนอกลไกเคลวิน-เฮล์มโฮลตซ์ (Kelvin-Helmholtz mechanism) ในการอธิบายการพาความร้อนขึ้นสู่ผิวดวงอาทิตย์ ต่อมาในปี พ.ศ. 2447 เออร์เนสต์ รัทเทอร์ฟอร์ด เสนอว่าพลังงานในดวงอาทิตย์มาจากปฏิกิริยาการคายพลังงานจากอนุภาคที่ถูกกระตุ้น[18] แต่ก็คงอธิบายไม่ละเอียดเท่าของอัลเบิร์ต ไอน์สไตน์ ซึ่งเป็นเจ้าของสมการสมมูลมวล-พลังงาน E=mc2

ในปี พ.ศ. 2463 อาร์เทอร์ เอดดิงตัน เสนอว่าความร้อนและความดันภายในแกนเป็นตัวการที่ทำให้เกิดปฏิกิริยาฟิวชัน และก่อให้เกิดการเปลี่ยนแปลงมวลและพลังงาน[19] สิบปีต่อมาทฤษฎีนี้เริ่มเป็นรูปเป็นร่าง โดยสุพราห์มันยัน จันทรเสกขา (Subrahmanyan Chandrasekar) นักดาราศาสตร์ชาวอเมริกันเชื้อสายอินเดีย และฮันส์ เบเทอ (Hans Bethe) นักดาราศาสตร์ชาวอเมริกันเชื้อสายเยอรมัน [20][21]

โครงการสำรวจดวงอาทิตย์

ไฟล์:I screenimage 30579.jpg
ภาพถ่ายพวยเพลิงสุริยะโดยเครื่องมือ 4 ชิ้นบนยานโซโฮ

องค์การนาซาได้เคยปล่อยยานสำรวจดวงอาทิตย์ในโครงการไพโอเนียร์ ซึ่งปล่อยช่วงปี พ.ศ. 2502 ถึง พ.ศ. 2511[22] โดยทำการตรวจวัดสนามแม่เหล็กของดวงอาทิตย์และลมสุริยะ ต่อมาก็ได้ส่งยานสกายแล็บเมื่อปี พ.ศ. 2516 ทำการศึกษาโคโรนาของดวงอาทิตย์ และการพ่นมวลของโคโรนา ในปี พ.ศ. 2534 ญี่ปุ่นได้ส่งยานโยะโกะ (阳光) เพื่อศึกษาเพลิงสุริยะในช่วงรังสีเอกซ์ นอกจากนี้ยังแสดงให้เห็นว่า โคโรนาจะยุบลงในช่วงที่มีกิจกรรมบนผิวดวงอาทิตย์มาก ยานโยะโกะถูกปลดระวางเมื่อ พ.ศ. 2548 [23]

ภารกิจสำรวจดวงอาทิตย์ที่เรารู้จักกันมักหนีไม่พ้นหอสังเกตการณ์ดวงอาทิตย์และสุริยมณฑล หรือโซโฮ (Solar and Heliospheric Observatory; SOHO) อันเป็นความร่วมมือระหว่างสหรัฐอเมริกา และสหภาพยุโรป ถูกปล่อยเมื่อวันที่ 2 ธันวาคม พ.ศ. 2538 เดิมทีกำหนดให้ปฏิบัติงานสองปี แต่กลับปฏิบัติงานมากกว่า 10 ปี ยานโซโฮเป็นยานสังเกตการณ์ที่ทำให้เรารู้หลายอย่างเกี่ยวกับดวงอาทิตย์มากขึ้นในหลายๆ ช่วงคลื่นแม่เหล็กไฟฟ้า และยังสังเกตเห็นดาวหางที่พุ่งชนดวงอาทิตย์ด้วย ส่วนอีกโครงการหนึ่งที่มีแผนจะปล่อยขึ้นสู่ห้วงอวกาศในเดือนสิงหาคม ปี พ.ศ. 2551[24] คือโครงการหอสังเกตการณ์สุริยพลวัต (Solar Dynamic Observatory) ซึ่งจะนำไปไว้ยังจุดลากรองจ์ (Lagrangian point) หรือจุดสะเทินแรงดึงดูด ระหว่างโลกกับดวงอาทิตย์

นอกเหนือจากนี้ ยังมีโครงการสังเกตระบบสุริยะจากมุมอื่น โดยมีการส่งยานยุลลิซิส (Ulysses) เมื่อ พ.ศ. 2533 โดยให้ไปยังดาวพฤหัสบดีเพื่อเหวี่ยงตัวขึ้นเหนือระนาบระบบสุริยะ ครานั้นยานสามารถสังเกตเห็นดาวหางชูเมกเกอร์-เลวี 9 ชนดาวพฤหัสบดีในปี พ.ศ. 2537 เมื่อยานยุลลิซิสถึงที่หมาย ก็จะทำการสำรวจลมสุริยะและสนามแม่เหล็กที่ละติจูดสูงๆ และพบว่าอัตราเร็วลมสุริยะอยู่ที่ 750 กิโลเมตรต่อวินาที ซึ่งช้ากว่าที่ได้คาดไว้ และยังมีสนามแม่เหล็กที่ทำให้รังสีคอสมิกกระเจิงด้วย[25]

บทบาทของดวงอาทิตย์ต่อสิ่งมีชีวิต

นับตั้งแต่ปฏิกิริยาอุณหนิวเคลียร์ (thermonuclear reaction) ในใจกลางดวงอาทิตย์ แผ่พลังงานออกมาในรูปของคลื่นแม่เหล็กไฟฟ้าและพลังงานที่สะสมภายในอนุภาค ใช้เวลาเดินทางนับหมื่นนับแสนปีจนกระทั่งถึงผิวดวงอาทิตย์ และต่อด้วยการเดินทาง 8 นาทีมายังโลกของเรา ในรูปของแสงที่มองเห็น รังสีแกมมา รังสีเอกซ์ และรังสีอื่น ๆ ต้องขอบคุณชั้นบรรยากาศโลกที่ได้กรองเอาสิ่งที่เป็นอันตรายเหล่านี้ออกไป ไม่นานนักพลังงานก็ถึงยังพื้นโลก ทั้งให้ความอบอุ่นน่าอยู่ในเขตหนาว หรือแม้แต่ให้ความรู้สึกรำคาญในเขตร้อน ทว่าพลังงานจากดวงอาทิตย์ก็ได้ถูกดูดซับเข้าไปในพืชและโพรทิสต์ จากนั้นพืชก็สามารถตรึงเอาคาร์บอนไดออกไซด์ออกจากอากาศได้เป็นน้ำตาล ผ่านกระบวนการสังเคราะห์ด้วยแสง น้ำตาลที่ได้นั้นพืชก็จะนำไปแปรรูปเป็นทั้งผนังเซลล์ เยื่อหุ้มเซลล์ ออแกเนลล์ภายในเซลล์ ฯลฯ นอกเหนือจากธาตุอาหารที่ดูดขึ้นมาจากดิน

เมื่อพืชเป็นผู้ผลิต (ที่แท้จริงคือผู้แปรรูป) อาหารจากพลังงานแสงอาทิตย์ ก็ทำให้สัตว์มีอาหารจากส่วนต่าง ๆ ของพืช ในการสลายอาหารของสัตว์ สิ่งสำคัญที่สุดนอกจากอาหารที่ได้รับแล้วก็คือออกซิเจน ซึ่งเป็นของเสียในกระบวนการสังเคราะห์ด้วยแสง เพื่อไปรับอิเล็กตรอนตัวสุดท้ายในกระบวนการสลายสารอาหารระดับเซลล์ ขณะเดียวกันสัตว์ก็หายใจเอาแก๊สคาร์บอนไดออกไซด์ซึ่งเป็นสารพลังงานต่ำออกมา เพื่อที่พืชจะได้ตรึงอีกครั้งเป็นวัฏจักร

ความเชื่อของมนุษย์ต่อดวงอาทิตย์

ดวงอาทิตย์ เป็นสิ่งบูชาของชาวโลกมาแต่โบราณ ชาวกรีกโบราณเชื่อว่าอพอลโล เป็น เทพแห่งดวงอาทิตย์ ชาวอียิตป์โบราณ ถือเทพรา เป็นเทพเจ้าแห่งดวงอาทิตย์เช่นกัน รวมถึงโหรศาสตร์ไทยมี พระอาทิตย์ เป็นเทวดาประจำ

อ้างอิง

  1. 1.00 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.10 1.11 NASA "Sun Fact Sheet"
  2. 2.0 2.1 2.2 2.3 2.4 2.5 Sun:Facts & figures NASA Solar System Exploration page
  3. 3.0 3.1 Seidelmann, P. K. (2000). "Report Of The IAU/IAG Working Group On Cartographic Coordinates And Rotational Elements Of The Planets And Satellites: 2000". สืบค้นเมื่อ 2006-03-22. {{cite web}}: ไม่รู้จักพารามิเตอร์ |coauthors= ถูกละเว้น แนะนำ (|author=) (help)
  4. Kerr, F. J. (1986). "Review of galactic constants" (PDF). Monthly Notices of the Royal Astronomical Society. 221: 1023–1038. {{cite journal}}: ไม่รู้จักพารามิเตอร์ |coauthors= ถูกละเว้น แนะนำ (|author=) (help)
  5. Falk, S. W. (1977). "Are supernovae sources of presolar grains?". Nature. 270: 700–701. {{cite journal}}: ไม่รู้จักพารามิเตอร์ |coauthors= ถูกละเว้น แนะนำ (|author=) (help)
  6. Barsh G.S., 2003, What Controls Variation in Human Skin Color?, PLoS Biology, v. 1, p. 19 [1]
  7. Bonanno, A. (2002). "The age of the Sun and the relativistic corrections in the EOS" (PDF). Astronomy and Astrophysics. 390: 1115–1118. {{cite journal}}: ไม่รู้จักพารามิเตอร์ |coauthors= ถูกละเว้น แนะนำ (|author=) (help)
  8. 8.0 8.1 Pogge, Richard W. (1997). "The Once and Future Sun" (lecture notes). New Vistas in Astronomy. The Ohio State University (Department of Astronomy). สืบค้นเมื่อ 2005-12-07. {{cite web}}: แหล่งข้อมูลอื่นใน |work= (help)
  9. Sackmann, I.-Juliana (1993). "Our Sun. III. Present and Future". Astrophysical Journal. 418: 457. {{cite journal}}: ไม่รู้จักพารามิเตอร์ |coauthors= ถูกละเว้น แนะนำ (|author=) (help); ไม่รู้จักพารามิเตอร์ |month= ถูกละเว้น (help)
  10. Godier, S. (2000). "The solar oblateness and its relationship with the structure of the tachocline and of the Sun's subsurface" (PDF). Astronomy and Astrophysics. 355: 365–374. {{cite journal}}: ไม่รู้จักพารามิเตอร์ |coauthors= ถูกละเว้น แนะนำ (|author=) (help)
  11. Lewis, Richard (1983). The Illustrated Encyclopedia of the Universe. Harmony Books, New York. p. 65.
  12. Plait, Phil (1997). "Bitesize Tour of the Solar System: The Long Climb from the Sun's Core". Bad Astronomy. สืบค้นเมื่อ 2006-03-22.
  13. Gibson, Edward G. (1973). The Quiet Sun. NASA.
  14. Shu, Frank H. (1991). The Physics of Astrophysics. University Science Books.
  15. "Galileo Galilei (1564–1642)". BBC. สืบค้นเมื่อ 2006-03-22.
  16. "Sir Isaac Newton (1643–1727)". BBC. สืบค้นเมื่อ 2006-03-22.
  17. "Herschel Discovers Infrared Light". Cool Cosmos. สืบค้นเมื่อ 2006-03-22.
  18. Darden, Lindley (1998). "The Nature of Scientific Inquiry". Macmillan's Magazine.
  19. "Studying the stars, testing relativity: Sir Arthur Eddington". ESA Space Science. 2005-06-15.
  20. Bethe, H. (1938). "On the Formation of Deuterons by Proton Combination". Physical Review. 54: 862–862.
  21. Bethe, H. (1939). "Energy Production in Stars". Physical Review. 55: 434–456.
  22. "Pioneer 6-7-8-9-E". Encyclopedia Astronautica. สืบค้นเมื่อ 2006-03-22.
  23. Japan Aerospace Exploration Agency (2005). "Result of Re-entry of the Solar X-ray Observatory "Yohkoh" (SOLAR-A) to the Earth's Atmosphere". สืบค้นเมื่อ 2006-03-22.
  24. "Solar Dynamic Observatory Mission Schedule". NASA. สืบค้นเมื่อ 2007-7-30. {{cite web}}: line feed character ใน |title= ที่ตำแหน่ง 27 (help); ตรวจสอบค่าวันที่ใน: |accessdate= (help)
  25. "Ulysses - Science - Primary Mission Results". NASA. สืบค้นเมื่อ 2006-03-22.

แหล่งข้อมูลอื่น

2 = พระอาทิตย์

แม่แบบ:Link FA แม่แบบ:Link FA แม่แบบ:Link FA แม่แบบ:Link FA แม่แบบ:Link FA แม่แบบ:Link FA แม่แบบ:Link FA แม่แบบ:Link FA

แม่แบบ:Link GA แม่แบบ:Link GA

ak:Ewia