เลขฐานสอง

จากวิกิพีเดีย สารานุกรมเสรี
ระบบเลขตามพัฒนาการ
เลขฮินดู-อารบิก
อารบิกตะวันตก
อารบิกตะวันออก
เขมร
มอญ
อินเดีย
พราหฺมี
ไทย
 
เลขเอเชียตะวันออก
จีน
ญี่ปุ่น
เกาหลี
 
เลขตัวอักษร
แอ็บยัด
อาร์เมเนีย
ซีริลลิก
กีเอส
ฮีบรู
ไอโอเนียน/กรีก
สันสกฤต
 
ระบบอื่นๆ
แอตติก
อีทรัสคัน
โรมัน
บาบิโลเนีย
อียิปต์
มายา
รายชื่อระบบเลข
ระบบเลขตามฐาน
เลขฐานสิบ (10)
2, 4, 8, 16, 32, 64
3, 9, 12, 24, 30, 36, 60, อื่น...
    

เลขฐานสอง (อังกฤษ: binary numeral system) หมายถึง ระบบเลขที่มีสัญลักษณ์เพียงสองตัวคือ 0 (ศูนย์) กับ 1 (หนึ่ง) บางครั้งอาจหมายถึงการที่มีโอกาสเลือกได้เพียง 2 ทาง เช่น ปิดกับเปิด, ไม่ใช่กับใช่, เท็จกับจริง, ซ้ายกับขวา เป็นต้น

ถ้าแปลงค่าเลขฐานสิบ มาเป็นเลขฐานสอง จะได้ดังนี้

  • 0 = 0000
  • 1 = 0001
  • 2 = 0010
  • 3 = 0011
  • 4 = 0100
  • 5 = 0101
  • 6 = 0110
  • 7 = 0111
  • 8 = 1000
  • 9 = 1001
  • 10(A) = 1010
  • 11(B) = 1011
  • 12(C) = 1100
  • 13(D) = 1101
  • 14(E) = 1110
  • 15(F) = 1111

ในปัจจุบันเลขฐานสองเป็นพื้นฐานในการทำงานของคอมพิวเตอร์ โดยนำเอาหลักการของเลขฐานสอง (สถานะไม่มีไฟฟ้า และ สถานะมีไฟฟ้า) มาใช้ในการสร้างไมโครโปรเซสเซอร์ที่มีหน่วยประมวลผลแบบ 32 หรือ 64 บิต หรือมากกว่านั้น ซึ่งสามารถเรียกได้ว่าเป็นการประมวลผลแบบดิจิทัล

ดูเพิ่ม[แก้]