เลขฐานสอง

จากวิกิพีเดีย สารานุกรมเสรี
ระบบเลขตามพัฒนาการ
ตัวเลขฮินดู-อารบิก
อารบิกตะวันตก
อารบิกตะวันออก
เขมร
มอญ
อินเดีย
พราหฺมี
ไทย
 
ตัวเลขเอเชียตะวันออก
จีน
ญี่ปุ่น
เกาหลี
 
ตัวเลขที่ใช้ตัวอักษร
แอ็บยัด
อาร์มีเนีย
ซีริลลิก
กีเอส
ฮีบรู
ไอโอเนียน/กรีก
สันสกฤต
 
ตัวเลขระบบอื่น ๆ
แอตติก
อีทรัสคัน
โรมัน
บาบิโลเนีย
อียิปต์
มายา
รายชื่อระบบเลข
ระบบเลขตามฐาน
เลขฐานสิบ (10)
2, 4, 8, 16, 32, 64
3, 9, 12, 24, 30, 36, 60, อื่น...
    

เลขฐานสอง (อังกฤษ: binary numeral system) หมายถึง ระบบเลขที่มีสัญลักษณ์เพียงสองตัวคือ 0 (ศูนย์) กับ 1 (หนึ่ง) บางครั้งอาจหมายถึงการที่มีโอกาสเลือกได้เพียง 2 ทาง เช่น ปิดกับเปิด, ไม่ใช่กับใช่, เท็จกับจริง, ซ้ายกับขวา เป็นต้น

ถ้าแปลงค่าเลขฐานสิบ มาเป็นเลขฐานสอง จะได้ดังนี้

* 0  =  0000 
* 1  =  0001
* 2  =  0010
* 3  =  0011
* 4  =  0100
* 5  =  0101
* 6  =  0110
* 7  =  0111
* 8  =  1000
* 9  =  1001
* 10(A) =  1010
* 11(B) = 1011
* 12(C) = 1100
* 13(D) = 1101
* 14(E) = 1110
* 15(F) = 1111

ในปัจจุบันเลขฐานสองเป็นพื้นฐานในการทำงานของคอมพิวเตอร์ โดยนำเอาหลักการของเลขฐานสอง (สถานะไม่มีไฟฟ้า และ สถานะมีไฟฟ้า) มาใช้ในการสร้างไมโครโปรเซสเซอร์ที่มีหน่วยประมวลผลแบบ 32 หรือ 64 บิต หรือมากกว่านั้น ซึ่งสามารถเรียกได้ว่าเป็นการประมวลผลแบบดิจิทัล

ดูเพิ่ม[แก้]