อิเล็กทรอนิกส์ ออสซิลเลเตอร์
อิเล็กทรอนิกส์ ออสซิลเลเตอร์ (อังกฤษ: Electronic Oscillator) เป็นวงจรอิเล็กทรอนิกส์ที่ผลิตสัญญาณออกมาซ้ำ ๆ กัน คลื่นไฟฟ้าที่ออกมาส่วนใหญ่จะเป็น sine wave และคลื่นรูปสี่เหลี่ยม Oscillators มีแหล่งจ่ายไฟเป็นกระแสตรง (DC) มีเอาต์พุตเป็นสัญญาณดังกล่าวเพื่อใช้ในการส่งสัญญาณวิทยุและโทรทัศน์, สัญญาณนาฬิกาที่ควบคุมการทำงานของคอมพิวเตอร์ทุกชนิด, นาฬิกาควอทซ์และเสียงที่ผลิตโดย beepers อิเล็กทรอนิกส์และวิดีโอเกม
Oscillators แบ่งตามลักษณะของความถี่ของสัญญาณเอาต์พุต ได้แก่:
- oscillator เสียงที่มนุษย์ได้ยิน (audio frequency)ผลิตความถี่อยู่ในช่วงเสียงประมาณ 16-20 kHz.
- oscillator RF ผลิตสัญญาณคลื่นความถี่วิทยุ (RF) ช่วงประมาณ 100 kHz ถึง 100 GHz.
- oscillator ความถี่ต่ำ (LFO) สร้างสัญญาณความถี่ต่ำกว่า 20 Hz ≈ คำนี้มักจะใช้ในด้านการสังเคราะห์เสียงจะแตกต่างจาก oscillator เสียง
- Oscillators เพื่อผลิตเอาต์พุต AC พลังงานสูงจากไฟกระแสตรงมักจะเรียกว่าอินเวอร์เตอร์
oscillator อิเล็กทรอนิกส์ แบ่งเป็นสองประเภทหลักคือ oscillator เชิงเส้นหรือฮาร์โมนิคและ oscillator ไม่เชิงเส้นหรือผ่อนคลาย
oscillator เชิงเส้น
[แก้]oscillator แบบฮาร์โมนิคหรือเชิงเส้นผลิตเอาต์พุตคลื่นซายน์ มีสองประเภท ได้แก่
Feedback Oscillator
[แก้]รูปแบบที่พบมากที่สุดของ oscillator เชิงเส้นคือวงจรขยายสัญญาณอิเล็กทรอนิกส์เช่นแอมป์ทรานซิสเตอร์หรือออพแอมที่เชื่อมต่อกับ feedback loop ที่มีเอาต์พุตป้อนกลับเป็นอินพุทโดยผ่านทางตัวกรองเฉพาะความถี่เพื่อให้เป็น positive feedback เมื่อเริ่มจ่ายไฟไปให้วงจรขยายสัญญาณ สัญญาณรบกวนในวงจรอิเล็กทรอนิกส์จะเริ่มให้วงจรออสซิลเลเตอร์ทำงาน สัญญาณรบกวนดังกล่าวเดินทางเป็นวงรอบในวงจรมีการขยายกำลังและถูกกรองเฉพาะความถี่ที่ต้องการออกมาเป็นคลื่นซายน์ที่ความถี่เดียว
วงจร feedback สามารถจำแนกตามชนิดของตัวกรองเลือกความถี่ ดังนี้
- วงจร RC, ตัวกรองประกอบด้วยตัวต้านทานและตัวเก็บประจุ RC oscillator ส่วนใหญ่จะใช้ในการสร้างความถี่ต่ำเช่นในช่วงเสียงออดิโอ ประเภททั่วไปของวงจร RC ได้แก่ Phase-shifted Oscillator และ Wien Bridge Oscillator
- วงจร LC เป็นวงจรกรองแบบปรับความถี่ได้ ที่ประกอบด้วยตัวเหนี่ยวนำ (L) และตัวเก็บประจุ (C) เชื่อมต่อกันได้. ประจุไฟฟ้าจะไหลไปมาระหว่างแผ่นตัวเก็บประจุกับตัวเหนี่ยวนำ ดังนั้นวงจรกรองปรับความถี่สามารถเก็บพลังงานไฟฟ้าที่จะสั่นที่ความถี่เรโซแนนซ์(การสั่นพ้อง, เรโซแนนซ์, ปรากฏการณ์เมื่อระบบถูกทำให้สั่นด้วยความถี่เท่ากับความถี่ธรรมชาติของระบบเองแล้ว การสั่นนั้นจะสั่นได้รุนแรงหรือมีช่วงกว้างของการสั่นกว้างมากที่สุด [พจนานุกรมศัพท์ สสวท) ของ L และ C นั้น มีการสูญเสียเล็กน้อยในวงจรดังกล่าว แต่วงจรขยายสัญญาณสามารถชดเชยการสูญเสียเหล่านั้นได้และจ่ายพลังงานเอาต์พุตเป็นสัญญาณออกมา oscillators LC มักจะสร้างความถี่วิทยุ ใช้กับงานที่ต้องมีการปรับความถี่เช่นในเครื่องสร้างสัญญาณ, ในเครื่องส่งสัญญาณวิทยุและการปรับหาสถานีในเครื่องรับวิทยุ โดยทั่วไป วงจร LC จะได้แก่ Hartley, Colpitts and Clapp
- วงจรคริสตัล ใช้ผลึกคริสตัลในการสร้างความถี่ คริสตัลจะสั่นด้วยแรงกล ทำตัวเหมือนตัวเรโซเนเตอร์ ความถี่ของการสั่นสะเทือนกำหนดความถี่ของสัญญาณที่ผลิต คริสตัลมีค่า Q-factor สูงมากและความมั่นคงด้านอุณหภูมิดีกว่า LC หรือ RC oscillators จึงถูกนำมาใช้เพื่อรักษาเสถียรภาพของความถี่ของเครื่องส่งสัญญาณวิทยุมากที่สุดและเพื่อสร้างสัญญาณนาฬิกาในคอมพิวเตอร์และนาฬิกาควอทซ์ oscillators คริสตัลมักจะใช้วงจรเดียวกับ oscillators LC แต่ใช้คริสตัลแทนที่วงจรการปรับความถี่; วงจรเพียร์ซเป็นที่นิยมใช้ ผลึกควอตซ์มีข้อจำกัดโดยทั่วไปที่ความถี่ 30 MHz หรือต่ำกว่า คลื่นพื้นผิว (SAW) เป็นอุปกรณ์อีกชนิดหนึ่งของ piezoelectric resonator ทำให้ได้ความถี่ที่สูงขึ้นมาก ออสซิลเลเตอร์ดังกล่าวจะใช้ในการใช้งานเฉพาะที่จำเป็นต้องมีการอ้างอิงความถี่สูงเช่นในโทรศัพท์มือถือ
Negative Resistance Oscillator
[แก้]นอกจากนี้ feedback oscillator ที่อธิบายไว้ข้างต้นซึ่งใช้ทรานซิสเตอร์และออพแอมป์แล้ว, oscillator แบบเชิงเส้นยังมีอุปกรณ์ที่มีความต้านทานเชิงลบ เช่น หลอดแมกนีตรอน, ทันเนลไดโอด, และกันน์ไดโอด อีกด้วย. oscillators ต้านทานเชิงลบมักจะใช้ความถี่สูงในช่วงไมโครเวฟหรือสูงกว่า เพราะที่ความถี่สูงขนาดนี้ feedback oscillator ทำงานได้ไม่ดีเนื่องจากเฟสชิฟมากเกินไปในเส้นทาง feedback
ใน oscillators ต้านทานเชิงลบ, วงจรเรโซแนนซ์เช่นวงจร LC, คริสตัลหรือ cavity resonator มีการเชื่อมต่อกับอุปกรณ์ที่มีความต้านทานที่หักล้างกันเอง วงจรเรโซแนนซ์โดยมันตัวเองเกือบจะเป็น oscillator อยู่แล้ว; โดยที่มันสามารถเก็บพลังงานในรูปแบบของการแกว่งทางอิเล็กทรอนิกส์ถ้ากระตุ้นมัน แต่เพราะมีความต้านทานและความสูญเสียภายในอื่นๆ ทำให้การแกว่งลดลงเป็นศูนย์ ความต้านทานเชิงลบของอุปกรณ์ได้หักล้างการต้านทาน(เชิงบวก)ภายในตัวเรโซเนเตอร์ เป็นผลให้ลดการลดทอนและสร้างการสั่นอย่างต่อเนื่องที่เกิดขึ้นเองที่ความถี่เรโซแนนซ์ของมันเอง
oscillator แบบความต้านทานเชิงลบไม่จำกัดเฉพาะอุปกรณ์พอร์ตเดียวเหมือนไดโอด; วงจร feedback oscillator ที่ใช้อุปกรณ์ขยายสองพอร์ตเช่นทรานซิสเตอร์และหลอดก็มีความต้านทานเชิงลบเช่นกัน ในช่วงความถี่สูงทรานซิสเตอร์และ FETs ไม่ต้องการการ feedback แต่เมื่อใส่โหลดบางอย่างเข้าที่พอร์ตหนึ่งจะทำให้เกิดความไม่แน่นอนที่อีกพอร์ตหนึ่ง ทำให้เกิดความต้านทานเชิงลบป้อนกลับภายใน เกิดการสั่นขึ้น ดังนั้น oscillators ความถี่สูงโดยทั่วไปได้รับการออกแบบโดยใช้เทคนิคความต้านทานเชิงลบ.
อุปกรณ์ที่ใช้งานใช้ใน oscillators และความถี่สูงสุดโดยประมาณ
อุปกรณ์ | ความถี่ |
Triode vacuum tube | 1 GHz |
Bipolar transistor (BJT) | 20 GHz |
Heterojunction Bipolar Transistor (HBT) | 50 GHz |
Metal Semiconductor Field Effect Transistor (MESFET) | 100 GHz |
High Electron Mobility Transistor (HEMT) | 200 GHz |
Gunn diode, fundamental mode | 100 GHz |
Gunn diode, harmonic mode | 200 GHz |
IMPATT diode | 300 GHz |
Klystron tube | 200 GHz |
Magnetron tube | 100 GHz |
Gyrotron tube | 300 GHz |
วงจร
[แก้]ตัวอย่างบางส่วนของวงจรเชิงเส้น:
- Armstrong oscillator
- Hartley oscillator
- Colpitts oscillator
- Clapp oscillator
- Delay line oscillator
- Pierce oscillator (crystal)
- Phase-shift oscillator
- Wien bridge oscillator
- Cross-coupled LC oscillator
- Vackář oscillator
- Opto-electronic oscillator
- Tri-tet oscillator
- Robinson oscillator
oscillator แบบผ่อนคลาย
[แก้]oscillator แบบไม่เชิงเส้นหรือแบบผ่อนคลายสร้างรูปคลื่นที่ไม่ใช่ซายน์ เช่น คลื่นสี่เหลี่ยม, คลื่นฟันเลื่อยหรือสามเหลี่ยม. วงจรประกอบด้วยอุปกรณ์จัดเก็บพลังงาน (เช่นตัวเก็บประจุหรือมีบ้างที่เป็นคอยล์) และวงจรสวิทช์ที่ไม่เชิงเส้น (เช่นวงจร latch, Schmitt trigger และอุปกรณ์ความต้านทานลบ) ที่ค่อยๆเก็บและระบายประจุไฟฟ้าเป็นระยะ ๆ จึงทำให้ได้รูปคลื่นที่มีการเปลี่ยนระดับอย่างกระทันหัน
oscillators ผ่อนคลายแบบคลื่นสี่เหลี่ยม ถูกใช้ในการให้สัญญาณนาฬิกาสำหรับวงจรลอจิกลำดับเช่นตัวตั้งเวลาและตัวนับ แม้ว่า oscillators คริสตัล จะเป็นที่นิยมใช้เพราะมีเสถียรภาพสูงกว่า oscillator คลื่นรูปสามเหลี่ยมหรือแบบฟันเลื่อยถูกใช้ในวงจร timebase ที่สร้างสัญญาณสแกนแนวนอนสำหรับจอภาพของ Oscilloscope และโทรทัศน์แบบแอนะล็อก ในเครื่องกำเนิดฟังชั่น คลื่นสามเหลี่ยมนี้แล้วอาจจะแปรรูปต่อไปเป็นคลื่นที่ใกล้เคียงกับคลื่นไซน์
oscillators แบบวงแหวนถูกสร้างขึ้นมาจากวงแหวนของขั้นตอนที่ใช้งานที่ถูกหน่วงเวลา โดยทั่วไปวงแหวนมีเลขคี่ของขั้นตอนกลับหัว เพื่อให้แน่ใจว่าจะไม่มีเสถียรภาพเพียงสถานะเดียวสำหรับแรงดันไฟฟ้าแหวนภายใน แต่การเปลี่ยนแปลงเพียงครั้งเดียวจะแพร่กระจายไปรอบ ๆ แหวนไม่รู้จบ
วงจร oscillator แบบผ่อนคลายรวมถึง:
- multivibrator
- ring oscillator
- delay line oscillator
- Royer oscillator
- rotary traveling wave oscillator
oscillator แบบควบคุมด้วยแรงดันไฟฟ้า(VCO)
[แก้]oscillator สามารถออกแบบเพื่อให้ความถี่สามารถปรับได้ด้วยกระแสหรือแรงดันที่อินพุท oscillators ที่สามารถควบคุมด้วยแรงดันไฟฟ้าที่มีการใช้กันอย่างแพร่หลายใน phase-locked loop ที่ซึ่งความถี่ของ oscillator หนึ่งสามารถถูกล๊อกกับความถี่ของ oscillator อื่นได้ วงจรนี้เป็นที่แพร่หลายในการสื่อสารที่ทันสมัย, ใช้ในการกรอง, modulators, demodulators และใช้บนพื้นฐานของวงจรสังเคราะห์ความถี่ที่ใช้ในการปรับแต่งวิทยุและโทรทัศน์
VCOs ความถี่วิทยุมักจะถูกสร้างโดยการเพิ่มไดโอด Varactor ในวงจรหาคลื่นสถานีส่งหรือโดยการเพิ่มตัวสร้างเรโซแนนซ์ในวงจร oscillator การเปลี่ยนแรงดันไฟตกคร่อม varacter จะเปลี่ยนแปลงค่า capacitance ซึ่งเป็นการเปลี่ยนแปลงความถี่เรโซแนนซ์ของวงจรหาคลื่นด้วย oscillator แบบผ่อนคลายที่ถูกควบคุมด้วยแรงดันไฟฟ้าสามารถถูกสร้างขึ้นโดยการชาร์จและการดีสชาร์จตัวเก็บประจุด้วยแหล่งจ่ายกระแสควบคุมด้วยแรงดัน การเพิ่มแรงดันไฟฟ้าที่อินพุทจะไปเพิ่มอัตราของการชาร์จประจุของตัวเก็บประจุ แต่ไปลดเวลาระหว่างการเปลี่ยนชาร์จ/ดีสชาร์จนั่นคือลดความถี่ในวงจร oscillator
ดูเพิ่ม
[แก้]- Voltage-controlled oscillator
- Injection locked oscillator
- Numerically controlled oscillator
- Opto-Electronic Oscillator
- Phase-locked loop
- Barkhausen stability criterion