ไวไฟ

จากวิกิพีเดีย สารานุกรมเสรี
(เปลี่ยนทางจาก วายฟาย)

ไวไฟ[1] (อังกฤษ: Wi-Fi หรือ WiFi) เป็นเทคโนโลยีที่ได้รับความนิยมที่ช่วยให้อุปกรณ์อิเล็กทรอนิกส์ในการแลกเปลี่ยนข้อมูลหรือการเชื่อมต่ออินเทอร์เน็ตแบบไร้สายโดยใช้คลื่นวิทยุ คำ ๆ นี้เป็นเครื่องหมายการค้าของ Wi-Fi Alliance ที่ได้ให้คำนิยามของไวไฟว่าหมายถึง "ชุดผลิตภัณฑ์ใด ๆ ที่สามารถทำงานได้ตามมาตรฐานเครือข่ายคอมพิวเตอร์แบบไร้สาย (แลนไร้สาย) ซึ่งอยู่บนมาตรฐาน IEEE 802.11" อย่างไรก็ตามเนื่องจากแลนไร้สายที่ทันสมัยส่วนใหญ่จะขึ้นอยู่กับมาตรฐานเหล่านี้ คำว่า "ไวไฟ" จึงนำมาใช้ในภาษาอังกฤษทั่วไปโดยเป็นคำพ้องสำหรับ "แลนไร้สาย" เดิมทีไวไฟออกแบบมาใช้สำหรับอุปกรณ์พกพาต่าง ๆ และใช้เครือข่าย LAN เท่านั้น แต่ปัจจุบันนิยมใช้ไวไฟเพื่อต่อกับอินเทอร์เน็ต โดยอุปกรณ์พกพาต่าง ๆ เช่นคอมพิวเตอร์ส่วนบุคคล เครื่องเล่นเกมส์ โทรศัพท์สมาร์ทโฟน แท็บเล็ต กล้องดิจิทัลและเครื่องเสียงดิจิทัล สามารถเชื่อมต่อกับอินเทอร์เน็ตได้ผ่านอุปกรณ์ที่เรียกว่าแอคเซสพอยต์รือ ฮอตสปอต และบริเวณที่ระยะทำการของแอคเซสพอยต์ครอบคลุมอยู่ที่ประมาณ 20 ม.ในอาคาร แต่ระยะนี้จะไกลกว่าถ้าเป็นที่โล่งแจ้ง

ภาพของอุปกรณ์ส่งข้อมูลแบบไร้สายไปยังอุปกรณ์อื่นทั้งที่เชื่อมต่อกับแลนไร้สายและเครือข่ายท้องถิ่นใช้สายในการพิมพ์เอกสาร

Wi-Fi มีความปลอดภัยน้อยกว่าการเชื่อมต่อแบบมีสาย (เช่น Ethernet) เพราะผู้บุกรุกไม่จำเป็นต้องเชื่อมต่อทางกายภาพ หน้าเว็บที่ใช้ SSL[2] มีความปลอดภัย แต่การใช้อินเทอร์เน็ตที่ไม่ได้เข้ารหัสสามารถจะตรวจพบโดยผู้บุกรุก ด้วยเหตุนี้ Wi-Fi ได้พัฒนาเทคโนโลยีการเข้ารหัสต่าง ๆ มากมาย WEP เป็นการเข้ารหัสรุ่นแรก ๆ พิสูจน์แลัวว่าง่ายต่อการบุกรุก โพรโทคอลที่มีคุณภาพสูงกว่าได้แก่ WPA, WPA2 มีเพิ่มขึ้นมาในภายหลัง คุณลักษณะตัวเลือกที่เพิ่มเข้ามาในปี 2007 ที่เรียกว่า Wi-Fi Protected Setup (WPS) มีข้อบกพร่องร้ายแรงที่ยอมให้ผู้โจมตีสามารถกู้คืนรหัสผ่านของเราเตอร์ได้[3] Wi-Fi Alliance ได้ทำการปรับปรุงแผนการทดสอบและโปรแกรมการรับรองตั้งแต่นั้นเป็นต้นมาเพื่อให้แน่ใจว่า อุปกรณ์ที่ได้รับการรับรองใหม่ทั้งหมดสามารถต่อต้านการโจมตีได้

ประวัติ[แก้]

สำหรับรายละเอียดของมาตรฐาน IEEE 802.11 ดู IEEE 802.11

ไวไฟ หรือ เทคโนโลยีเครือข่ายแบบไร้สาย มาตรฐาน IEEE 802.11 ถือกำเนิดขึ้นในปี ค.ศ. 1997 จัดตั้งโดยองค์การไอทริปเปิ้ลอี (สถาบันวิศวกรรมทางด้านไฟฟ้าและอิเล็กโทรนิคส์) มีความเร็ว 1 Mbps ในยุคเริ่มแรกนั้นให้ประสิทธิภาพการทำงานที่ค่อนข้างต่ำ ทั้งไม่มีการรับรองคุณภาพของการให้บริการที่เรียกว่า QoS (Quality of Service) และมาตรฐานความปลอดภัยต่ำ จากนั้นทาง IEEE จึงจัดตั้งคณะทำงานขึ้นมาปรับปรุงหลายกลุ่มด้วยกัน โดยที่กลุ่มที่มีผลงานเป็นที่น่าพอใจและได้รับการยอมรับอย่างเป็นทางการว่า ได้มาตรฐานได้แก่กลุ่ม 802.11a, 802.11b และ 802.11g

เทคโนโลยี 802.11 มีต้นกำเนิดในปี ค.ศ. 1985 กำหนดขึ้นโดยคณะกรรมการการสื่อสารแห่งชาติสหรัฐอเมริกา (U.S. Federal Communications Commission) หรือ FCC ที่ประกาศช่วงความถี่สำหรับกิจการด้านอุตสาหกรรม วิทยาศาสตร์และการแพทย์ (ISM) สำหรับการใช้งานที่ไม่ต้องมีใบอนุญาต

ในปี ค.ศ. 1991 บริษัท เอ็นซีอาร์/เอทีแอนด์ที (ตอนนี้เป็น Alcatel-Lucent และ LSI คอร์ปอเรชั่น) ได้สร้างชุดตั้งต้นของ 802.11 ในเมือง Nieuwegein, เนเธอร์แลนด์ ตอนแรกนักประดิษฐ์ตั้งใจจะใช้เทคโนโลยีนี้สำหรับระบบเก็บเงิน ผลิตภัณฑ์ไร้สายตัวแรกที่นำออกสู่ตลาดอยู่ภายใต้ชื่อ WaveLAN ที่มีอัตราข้อมูลดิบของ 1 Mbit/s และ 2 Mbit/s

วิก เฮส์ผู้เป็นประธานของ IEEE 802.11 เป็นเวลา 10 ปีและเรียกว่า "บิดาแห่ง Wi-Fi" ได้มีส่วนร่วมในการออกแบบ 802.11b และ 802.11a มาตรฐานเริ่มต้นภายใน IEEE.

นักวิทยุ-ดาราศาสตร์ชาวออสเตรเลียชื่อ จอห์น โอ ซัลลิแวนได้พัฒนาสิทธิบัตรที่สำคัญที่ใช้ใน Wi-Fi ที่เป็นผลพลอยได้ในโครงการวิจัย CSIRO "การทดลองที่ล้มเหลวในการตรวจสอบหาการระเบิดหลุมดำขนาดเล็กที่มีขนาดเท่าหนึ่งอนุภาคอะตอม"[4] ในปี ค.ศ. 1992 และ ปี ค.ศ. 1996 องค์กรของออสเตรเลียชื่อ CSIRO (the Australian Commonwealth Scientific and Industrial Research Organisation) ได้รับสิทธิบัตร[5]สำหรับวิธีการที่ในภายหลังใช้ใน Wi-Fi ในการ "กำจัดรอยเปื้อน"ของสัญญาณ.[6]

ในปี ค.ศ. 1999 Wi-Fi Alliance จัดตั้งขึ้นเป็นสมาคมการค้าเจ้าของเครื่องหมายการค้า Wi-Fi ซึ่งผลิตภัณฑ์ส่วนใหญ่ที่ใช้ Wi-Fi จะมีเครื่องหมายนี้

ในเดือนเมษายน ค.ศ. 2009 14 บริษัทเทคโนโลยีตกลงที่จะจ่าย 250 ล้านดอลลาร์สหรัฐ ให้กับ CSIRO สำหรับการละเมิดสิทธิบัตรของ CSIRO[7] สิ่งนี้ทำให้ Wi-Fi กลายเป็นสิ่งประดิษฐ์ ของออสเตรเลีย[8] แม้ว่าจะเป็นเรื่องของการโต้เถียงกันอยู่[9][10] ในปี ค.ศ. 2012 CSIRO ยังชนะคดีและจะได้รับเงินชดเชยเพิ่มเติม 220 ล้าน$ สำหรับการละเมิดสิทธิบัตร Wi-Fi กับบริษัทระดับโลกในประเทศสหรัฐอเมริกา ซึ่งจะต้องจ่ายค่าลิขสิทธิ์แก่ CSIRO ที่คาดว่าจะมีมูลค่าเพิ่มอีก $ 1 พันล้านดอลลาร์[11][12][13]

ลักษณะการเชื่อมต่อของอุปกรณ์[แก้]

ไวไฟ ได้กำหนดลักษณะการเชื่อมต่อของอุปกรณ์ภายในเครือข่ายแลน ไว้ 2 ลักษณะคือโหมด Infrastructure และโหมด Ad-Hoc หรือ Peer-to-Peer[14]

โหมด Infrastructure[แก้]

โดยทั่วไปแล้วอุปกรณ์ในเครือข่ายไวไฟ จะเชื่อมต่อกันในลักษณะของโหมด Infrastructure ซึ่งเป็นโหมดที่อนุญาตให้อุปกรณ์ภายใน LAN สามารถเชื่อมต่อกับเครือข่ายอื่นได้ ในโหมด Infrastructure นี้จะประกอบไปด้วยอุปกรณ์ 2 ประเภทได้แก่ สถานีผู้ใช้ (Client Station) ซึ่งก็คืออุปกรณ์คอมพิวเตอร์ (Desktop, แล็ปท็อป, หรือ PDA ต่าง ๆ ) ที่มีอุปกรณ์ Client Adapter เพื่อใช้รับส่งข้อมูลผ่านไวไฟ และสถานีแม่ข่าย (Access Point) ซึ่งทำหน้าที่ต่อเชื่อมสถานีผู้ใช้เข้ากับเครือข่ายอื่น (ซึ่งโดยปกติจะเป็นเครือข่าย IEEE 802.3 Ethernet LAN) การทำงานในโหมด Infrastructure มีพื้นฐานมาจากระบบเครือข่ายโทรศัพท์มือถือ กล่าวคือสถานีผู้ใช้จะสามารถรับส่งข้อมูลโดยตรงกับสถานีแม่ข่ายที่ให้บริการ แก่สถานีผู้ใช้นั้นอยู่เท่านั้น ส่วนสถานีแม่ข่ายจะทำหน้าที่ส่งต่อ (forward) ข้อมูลที่ได้รับจากสถานีผู้ใช้ไปยังจุดหมายปลายทางหรือส่งต่อข้อมูลที่ได้ รับจากเครือข่ายอื่นมายังสถานีผู้ใช้

โหมด Ad-Hoc หรือ Peer-to-Peer[แก้]

เครือข่ายไวไฟ.ในโหมด Ad-Hoc หรือ Peer-to-Peer เป็นเครือข่ายที่ปิดคือไม่มีสถานีแม่ข่ายและไม่มีการเชื่อมต่อกับเครือข่ายอื่น บริเวณของเครือข่ายไวไฟในโหมด Ad-Hoc จะเรียกว่า Independent Basic Service Set (IBSS) ซึ่งสถานีผู้ใช้หนึ่งสามารถติดต่อสื่อสารข้อมูลกับสถานีผู้ใช้อื่น ๆ ในเขต IBSS เดียวกันได้โดยตรงโดยไม่ต้องผ่านสถานีแม่ข่าย แต่สถานีผู้ใช้จะไม่สามารถรับส่งข้อมูลกับเครือข่ายอื่น ๆ ได้

กลไกรักษาความปลอดภัย[แก้]

ไวไฟได้กำหนดให้มีทางเลือกสำหรับสร้างความปลอดภัยให้กับเครือข่ายแลนแบบไร้สาย ด้วยกลไกซึ่งมีชื่อเรียกว่า WEP (Wired Equivalent Privacy) ซึ่งออกแบบมาเพื่อเพิ่มความปลอดภัยกับเครือข่าย LAN แบบไร้สายให้ใกล้เคียงกับความปลอดภัยของเครือข่ายแบบที่ใช้สายนำสัญญาณ (IEEE 802.3 Ethernet) บทบาทของ WEP แบ่งเป็น 2 ส่วนหลัก ๆ คือ การเข้ารหัสข้อมูล (Encryption) และ การตรวจสอบผู้ใช้ (Authentication)

การเข้าและถอดรหัสข้อมูล[แก้]

การเข้าและถอดรหัสข้อมูล (WEP Encryption/Decryption) ใช้หลักการในการเข้าและถอดรหัสข้อมูลที่เป็นแบบ symmetrical (นั่นคือรหัสที่ใช้ในการเข้ารหัสข้อมูลจะเป็นตัวเดียวกันกับรหัสที่ใช้ สำหรับการถอดรหัสข้อมูล)

  • การทำงานของการเข้ารหัสข้อมูลในกลไก WEP Encryption
    • 1. Key ขนาด 64 หรือ 128 บิต สร้างขึ้นโดยการนำเอารหัสลับซึ่งมีความยาว 40 หรือ 104 บิต มาต่อรวมกับข้อความเริ่มต้น IV (Initialization Vector) ขนาด 24 บิตที่กำหนดแบบสุ่มขึ้นมา
    • 2. Integrity Check Value (ICV) ขนาด 32 บิต สร้างขึ้นโดยการคำนวณค่า 32-bit Cyclic Redundant Check จากข้อมูลดิบที่จะส่งออกไป (ICV) ซึ่งจะนำไปต่อรวมกับข้อมูลดิบ มีไว้สำหรับตรวจสอบความถูกต้องของข้อมูลหลังจากการถอดรหัสแล้ว)
    • 3. ข้อความที่มีความสุ่ม (Key Stream) ขนาดเท่ากับความยาวของข้อมูลดิบที่จะส่งกับอีก 32 บิต (ซึ่งเป็นความยาวของ ICV) สร้างขึ้นโดยหน่วยสร้างข้อความที่มีความสุ่มหรือ PRNG (Pseudo-Random Number Generator) ที่มีชื่อเรียกว่า RC4 ซึ่งจะใช้ Key ที่กล่าวมาข้างต้นเป็น Input (หรือ Seed) หมายเหตุ PRNG จะสร้างข้อความสุ่มที่แตกต่างกันสำหรับ Seed แต่ละค่าที่ใช้
    • 4. ข้อความที่ได้รับการเข้ารหัส (Ciphertext) สร้างขึ้นโดยการนำเอา ICV ต่อกับข้อมูลดิบแล้วทำการ XOR แบบบิตต่อบิตกับข้อความสุ่ม (Key Stream) ซึ่ง PRNG ได้สร้างขึ้น
    • 5. สัญญาณที่จะส่งออกไปคือ ICV และข้อความที่ได้รับการเข้ารหัส (Ciphertext)
  • การทำงานของการเข้ารหัสข้อมูลในกลไก WEP Decryption
    • 1. Key ขนาด 64 หรือ 128 บิต สร้างขึ้นโดยการนำเอารหัสลับซึ่งมีความยาว 40 หรือ 104 บิต (ซึ่งเป็นรหัสลับเดียวกับที่ใช้ในการเข้ารหัสข้อมูล) มาต่อรวมกับ IV ที่ส่งมากับสัญญาณที่ได้รับ
    • 2. PRNG สร้างข้อความสุ่ม (Key Stream) ที่มีขนาดเท่ากับความยาวของข้อความที่ได้รับการเข้ารหัสและส่งมา โดยใช้ Key ที่กล่าวมาข้างต้นเป็น Input
    • 3. ข้อมูลดิบและ ICV ได้รับการถอดรหัสโดยการนำเอาข้อความที่ได้รับมา XOR แบบบิตต่อบิตกับข้อความสุ่ม (Key Stream) ซึ่ง PRNG ได้สร้างขึ้น
    • 4. สร้าง ICV' โดยการคำนวณค่า CRC-32 จากข้อมูลดิบที่ถอดรหัสแล้วเพื่อนำมาเปรียบเทียบกับค่า ICV ที่ส่งมา หากค่าทั้งสองตรงกัน (ICV' = ICV) แสดงว่าการถอดรหัสถูกต้องและผู้ที่ส่งมาได้รับอนุญาต (มีรหัสลับของเครือข่าย) แต่หากค่าทั้งสองไม่ตรงกันแสดงว่าการถอดรหัสไม่ถูกต้องหรือผู้ที่ส่งมาไม่ได้รับอนุญาต

การตรวจสอบผู้ใช้[แก้]

สำหรับเครือข่ายไวไฟ ผู้ใช้ (เครื่องลูกข่าย) จะมีสิทธิในการรับส่งสัญญาณข้อมูลในเครือข่ายได้ก็ต่อเมื่อได้รับการตรวจสอบ แล้วได้รับอนุญาต ซึ่งมาตรฐานไวไฟได้กำหนดให้มีกลไกสำหรับการตรวจสอบผู้ใช้ (Authentication) ใน 2 ลักษณะคือ Open System Authentication และ Shared Key Authentication ซึ่งเป็นดังต่อไปนี้

  • Open System Authentication

การตรวจสอบผู้ใช้ในลักษณะ นี้เป็นทางเลือกแบบ default ที่กำหนดไว้ในมาตรฐาน IEEE 802.11 ในการตรวจสอบแบบนี้จะไม่ตรวจสอบรหัสลับจากผู้ใช้ ซึ่งอาจกล่าวได้ว่าเป็นการอนุญาตให้ผู้ใช้ใด ๆ ก็ได้สามารถเข้ามารับส่งสัญญาณในเครือข่ายนั่นเอง แต่อย่างไรก็ตามในการตรวจสอบแบบนี้อุปกรณ์ที่ทำหน้าที่เป็นสถานีแม่ข่ายไม่จำเป็นต้องอนุญาตให้สถานีผู้ใช้เข้ามาใช้เครือข่ายได้เสมอไป ในกรณีนี้บทบาทของ WEP จึงเหลือแต่เพียงการเข้ารหัสข้อมูลเท่านั้น กลไกการตรวจสอบแบบ open system authentication มีขั้นตอนการทำงานดังต่อไปนี้

    • 1. สถานีที่ต้องการจะเข้ามาร่วมใช้เครือข่ายจะส่งข้อความซึ่งไม่เข้ารหัสเพื่อขอรับการตรวจสอบ (Authentication Request Frame) ไปยังอุปกรณ์ที่ทำหน้าที่เป็นสถานีแม่ข่าย โดยในข้อความดังกล่าวจะมีการแสดงความจำนงเพื่อรับการตรวจสอบแบบ open system
    • 2. อุปกรณ์ที่ทำหน้าที่เป็นสถานีแม่ข่ายโต้ตอบด้วยข้อความที่แสดงถึงการตอบรับหรือปฏิเสธ Request ดังกล่าว
  • Shared Key Authentication

การตรวจสอบผู้ใช้แบบ shared key authentication จะอนุญาตให้สถานีผู้ใช้ซึ่งมีรหัสลับของเครือข่ายนี้เท่านั้นที่สามารถเข้า มารับส่งสัญญาณกับอุปกรณ์ที่ทำหน้าที่เป็นสถานีแม่ข่ายได้ โดยมีการใช้เทคนิคการถามตอบที่ใช้กันทั่วไปผนวกกับการเข้ารหัสด้วย WEP เป็นกลไกสำหรับการตรวจสอบ (ดังนั้นการตรวจสอบแบบนี้จะทำได้ก็ต่อเมื่อมีการ Enable การเข้ารหัสด้วย WEP) กลไกการตรวจสอบดังกล่าวมีขั้นตอนการทำงานดังต่อไปนี้

    • 1. สถานีผู้ใช้ที่ต้องการจะเข้ามาร่วมใช้เครือข่ายจะส่งข้อความซึ่งไม่เข้ารหัสเพื่อขอรับการตรวจสอบ (Authentication Request Frame) ไปยังอุปกรณ์ที่ทำหน้าที่เป็นสถานีแม่ข่าย โดยในข้อความดังกล่าวจะมีการแสดงความจำนงเพื่อรับการตรวจสอบแบบ shared key
    • 2. หากสถานีแม่ข่ายต้องการตอบรับ Request ดังกล่าว จะมีการส่งข้อความที่แสดงถึงการตอบรับและคำถาม (challenge text) มายังเครื่องลูกข่าย ซึ่ง challenge text ดังกล่าวมีขนาด 128 ไบต์และสุ่มขึ้นมา (โดยอาศัย PRNG) หากอุปกรณ์แม่ข่ายไม่ต้องการตอบรับ Request ดังกล่าว จะมีการส่งข้อความที่แสดงถึงการไม่ตอบรับ ซึ่งเป็นการสิ้นสุดของการตรวจสอบครั้งนี้
    • 3. หากมีการตอบรับจากสถานีแม่ข่าย สถานีผู้ใช้ที่ขอรับการตรวจสอบจะทำการเข้ารหัสข้อความคำถามที่ส่งมาโดยใช้รหัสลับของเครือข่ายแล้วส่งกลับไปยังสถานีแม่ข่าย
    • 4. สถานีแม่ข่ายทำการถอดรหัสข้อความที่ตอบกลับมาโดยใช้รหัสลับของเครือข่าย หลังจากถอดรหัสแล้วหากข้อความที่ตอบกลับมาตรงกับข้อความคำถาม (challenge text) ที่ส่งไป สถานีแม่ข่ายจะส่งข้อความที่แสดงถึงการอนุญาตให้สถานีผู้ใช้นี้เข้าใช้เครือข่ายได้ แต่หากข้อความที่ตอบกลับมาไม่ตรงกับข้อความคำถาม สถานีแม่ข่ายจะโต้ตอบด้วยข้อความที่แสดงถึงการไม่อนุญาต

ข้อดีและข้อจำกัด[แก้]

เครื่องตรวจจับ Wi-Fi ขนาดพวงกุญแจ

ข้อดี[แก้]

Wi-Fi ช่วยให้การใช้งานของเครือข่ายท้องถิ่น (LANs) มีราคาถูกลง นอกจากนี้ยังมีบริเวณที่ไม่สามารถวางสายเคเบิลได้ เช่น พื้นที่กลางแจ้งและอาคารประวัติศาสตร์ เราจะสามารถให้บริการ LAN แบบไร้สายได้

ผู้ผลิตสามารถสร้างอะแดปเตอร์เครือข่ายไร้สายในแล็ปท็อปได้ ส่วนใหญ่ราคาของชิปเซ็ต สำหรับ Wi-Fi ยังคงลดลงเรื่อย ๆ ทำให้มีตัวเลือกที่เป็นเครือข่ายประหยัดรวมอยู่ในอุปกรณ์ ต่าง ๆ ได้มากขึ้น

หลาย ๆ แบรนด์ในการแข่งขันที่แตกต่างกันของ AP กับตัวเชื่อมต่อเครื่องลูกข่ายสามารถประสานทำงานกันได้ดีในระดับพื้นฐานของการให้บริการ ผลิตภัณฑ์ทั้งหลายที่ "รองรับ Wi-Fi" ที่ออกโดย Wi-Fi Alliance สามารถเข้ากันได้แบบย้อนหลัง ซึ่งแตกต่างจากโทรศัพท์มือถือ ที่อุปกรณ์ที่มีมาตรฐาน Wi-Fi ใด ๆ สามารถที่จะทำงานร่วมกันได้ที่ใด ๆ ก็ได้ในโลกนี้

การเข้ารหัสของไวไฟแบบ Wi-Fi Protected Access (WPA2) ถือได้ว่ามีความปลอดภัยโดยการใช้รหัสผ่านที่แข็งแกร่ง โพรโทคอลใหม่สำหรับคุณภาพของการให้บริการที่เรียกว่า Wireless Multimedia (WMM) ทำให้ Wi-Fi มีความเหมาะสมมากขึ้นสำหรับการใช้งานที่มี ความละเอียดอ่อนต่อเวลาแฝง(เช่นเสียงและวิดีโอ) กลไกการประหยัดพลังงานของ WMM จะช่วยยืดอายุแบตเตอรี่

ข้อจำกัด[แก้]

การกำหนดคลื่นความถี่และข้อจำกัดในการดำเนินงานไม่สม่ำเสมอทั่วโลก เช่นที่ออสเตรเลียและยุโรป ได้อนุญาตให้มีอีกสองแชนแนลเพิ่มเติมนอกเหนือจากที่ได้รับอนุญาตในสหรัฐอเมริกาสำหรับแถบความถึ่ 2.4 GHz (แชนแนล 1 ถึง 13 เทียบกับ 1 ถึง 11 ) ในขณะที่ประเทศญี่ปุ่นมีมากขึ้นอีกหนึ่ง(1 ถึง 14)

ภาพแสดงช่องความถี่ของ Wi-Fi ในแถบความถึ่ 2.4 GHz

สัญญาณ Wi-Fi กินพื้นที่ห้าแชนแนลในแถบความถี่ 2.4 GHz ตามภาพประกอบ ตัวเลขของแชนแนลใด ๆ สองแชแนลที่แตกต่างกันห้าตัวเลขหรือมากกว่า เช่นแชนแนล 2 และ 7 จะใช้คลิ่นความถี่ที่ไม่ทับซ้อนกัน เพราะฉะนั้น ความเชื่อเดิม ๆ ที่ว่า แชนแนลที่ 1, 6 , และ 11 เท่านั้นที่เป็นแชนแนลที่ไม่ทับซ้อนกันจึงไม่ถูกต้อง แชนแนลที่ 1 , 6, และ 11 เป็นกลุ่มของสามแชนแนลที่ไม่ทับซ้อนกันในทวีปอเมริกาเหนือและสหราชอาณาจักร ในยุโรปและญี่ปุ่นจะแนะนำให้ใช้ ช่อง 1, 5 , 9, และ 13 สำหรับ 802.11g และ 802.11n

ค่าการส่งพลังงานที่เรียกว่า Equivalent isotropically radiated power ( EIRP ) ในสหภาพยุโรปจะจำกัดที่ 20 dBm ( 100 mW )

ปัจจุบัน 802.11n ปรกติที่ 'เร็วที่สุด' จะใช้สเปกตรัมวิทยุ/แบนด์วิดธ์เป็นสองเท่า (40 MHz) เมื่อเทียบกับ 802.11a หรือ 802.11g (20 MHz) ซึ่งหมายความว่า จะมี เพียงหนึ่งเครือข่าย 802.11n เท่านั้นในแถบความถี่ 2.4 GHz ณ สถานที่ที่กำหนด โดยไม่มีการรบกวนไปยัง/จากการจราจร WLAN อื่น ๆ นอกจากนี้ 802.11n ยังสามารถตั้งค่าการใช้แบนด์วิดธ์ที่ 20 MHz เพียงเพื่อที่จะป้องกันการรบกวนในชุมชนหนาแน่น

พิสัย[แก้]

เครือข่าย Wi-Fi มีพิสัยจำกัด AP ไร้สายโดยทั่วไปที่ใช้ 802.11b หรือ 802.11g กับเสาอากาศอาจมีพิสัยทำการที่ 35 เมตร (120 ฟุต) ในบ้านและ 100 เมตร (300 ฟุต)กลางแจ้ง แต่ IEEE 802.11n สามารถทำงานในพิสัยที่มากกว่าสองเท่า พิสัยนี้ยังขึ้นอยู่กับช่วงความถี่ Wi-Fi ในบล็อกความถี่ 2.4 GHz มีพิสัยทำการที่ดีกว่า Wi-Fi ในบล็อกความถี่ 5 GHz ซึ่งใช้โดย 802.11a และ 802.11n ในเราเตอร์ไร้สายที่มีเสาอากาศถอดออกได้ เป็นไปได้ที่จะเพิ่มพิสัยโดยการติดตั้งเสาอากาศที่มีการเพิ่มเกนสูงขึ้นในทิศทางที่เฉพาะเจาะจง พิสัยกลางแจ้งสามารถเพิ่มไปได้หลายกิโลเมตรโดยการใช้เสาอากาศแบบทิศทางเกนสูงที่ เราเตอร์และอุปกรณ์ระยะไกล โดยทั่วไปจำนวนพลังงานสูงสุดที่อุปกรณ์ Wi-Fi สามารถส่ง ออกได้จะจำกัดโดยกฎระเบียบของท้องถิ่นเช่น FCC ส่วนที่ 15 ในสหรัฐอเมริกา

เพื่อเข้าถึงความต้องการสำหรับการใช้งานเครือข่ายไร้สาย Wi-Fi จึงมีการใช้พลังงานค่อนข้างสูงเมื่อเทียบกับมาตรฐานอื่น ๆ เทคโนโลยีเช่นบลูทูธ (ออกแบบมาเพื่อรองรับการใช้งาน PAN แบบไร้สาย) ให้พิสัยการกระจายคลื่นที่สั้นมาก ระหว่าง 1 ถึง 100 เมตร และโดยทั่วไปก็มีการใช้พลังงานที่ต่ำกว่า เทคโนโลยีพลังงานต่ำอื่น ๆ เช่น ZigBee มีพิสัยค่อนข้างไกล แต่อัตรารับส่งข้อมูลต่ำกว่ามาก การใช้พลังงานที่สูงของ Wi-Fi ทำให้แบตเตอรี่ใน โทรศัพท์มือถือน่าเป็นห่วง

นักวิจัยได้พัฒนาหลายเทคโนโลยีที่ "ไม่มีสายใหม่" เพื่อเป็นทางเลือกแทน Wi-Fi สำหรับการใช้งานที่หลากหลายในที่ซึ่งพิสัยในร่มของ Wi-Fi มีไม่เพียงพอและการติดตั้งสายใหม่ (เช่น CAT- 6) เป็นไปไม่ได้หรือค่าใช้จ่ายสูงเกินไป ตัวอย่างเช่นมาตรฐาน ITU -T G.hn สำหรับแลนความเร็วสูงที่ใช้สายไฟบ้านที่มีอยู่แล้ว (สาย coaxial, สายโทรศัพท์และสายไฟฟ้า) แม้ว่า G.hn ไม่ได้ให้บางส่วนของข้อดีของ Wi-Fi (เช่นการเคลื่อนที่หรือการใช้งานกลางแจ้ง), ออกแบบมาสำหรับการใช้งาน (เช่นการกระจาย IPTV ) ที่หลากหลาย ในร่มมีความสำคัญมากกว่าการเคลื่อนที่

เนื่องจากธรรมชาติที่ซับซ้อนของการกระจายคลื่นวิทยุที่ความถี่ทั่วไปของ Wi-Fi โดยเฉพาะอย่างยิ่งผลกระทบของการสะท้อนสัญญาณเมื่อกระทบต้นไม้และสิ่งปลูกสร้างต่าง ๆ อัลกอริทึมได้แต่เพียงคาดการณ์ความแรงของสัญญาณ Wi-Fi สำหรับพื้นที่ใด ๆ ที่สัมพันธ์กับตัวส่งสัญญาณเท่านั้น. ผลกระทบนี้ไม่ได้ใช้อย่างเท่าเทียมกันใน Wi-Fi พิสัยไกล เนื่องจากการเชื่อมโยงสัญญาณระยะไกลปกติจะดำเนินการจากเสาสูงที่ส่งสัญญาณเหนือสิ่งกีดขวางเหล่านั้น

พิสัยของ Wi-Fi ในทางปฏิบัติขึ้นอยู่กับขอบเขตการใช้อุปกรณ์เคลื่อนที่เพื่อการใช้งาน เช่นเครื่องตรวจสอบสินค้าคงคลังในคลังสินค้า หรือในพื้นที่ค้าปลีก อุปกรณ์อ่านบาร์โค้ดที่เคาน์เตอร์เช็คเอาท์ หรือสถานีรับ/ส่งสินค้า การใช้ Wi-Fi พิสัยกว้างกับอุปกรณ์เคลื่อนที่เร็ว จะทำได้จำกัด เช่น การใช้งานในขณะที่รถยนต์เคลื่อนย้ายจากฮอทสปอตหนึ่งไปยังอีกฮอทสปอดหนึ่ง เทคโนโลยีไร้สายอื่น ๆ น่าจะมีความเหมาะสมมากกว่าสำหรับการสื่อสารกับยานพาหนะเคลื่อนที่เร็ว

ความเสี่ยงด้านความปลอดภัยของข้อมูล[แก้]

มาตรฐานการเข้ารหัสแบบไร้สายที่พบมากที่สุดคือ Wired Equivalent Privacy (WEP) พบว่าเปราะบางง่ายแม้ว่าจะคอนฟิคอย่างถูกต้องก็ตาม การเข้ารหัส Wi-Fi Protected Access ( WPA และ WPA2 ) ซึ่งมีอยู่ในอุปกรณ์ในปี 2003 มีวัตถุประสงค์เพื่อแก้ปัญหานี้ Wi-Fi AP โดยปกติจะเริ่มต้นเป็นโหมดไม่เข้ารหัส (เปิด) มือใหม่จะได้ประโยชน์จากอุปกรณ์ที่กำหนดค่าเป็นศูนย์ที่ทำงานตอนแกะกล่อง แต่การเริ่มต้นนี้ไม่ได้ช่วยการรักษาความปลอดภัยไร้สายใด ๆ แต่เปิดให้เชื่อมต่อไร้สายเข้ากับ LAN ในการเปิดการรักษาความปลอดภัย ผู้ใช้ต้องคอนฟิคอุปกรณ์ที่มักจะผ่านทางส่วนติดต่อผู้ใช้แบบกราฟิกซอฟต์แวร์ (GUI) บนเครือข่าย Wi-Fi ที่ไม่ได้เข้ารหัส อุปกรณ์ที่กำลังเชื่อมต่อ สามารถตรวจสอบและ บันทึกข้อมูล (รวมถึงข้อมูลส่วนบุคคล)ได้ เครือข่ายดังกล่าวสามารถจะได้รับการป้องกันความปลอดภัย โดยการใช้วิธีการอื่น เช่น VPN หรือ Hypertext Transfer Protocol ( HTTPS) over Transport Layer Security ที่ปลอดภัยเท่านั้น

การรบกวน[แก้]

การเชื่อมต่อ Wi-Fi สามารถจะหยุดชะงักหรืออินเทอร์เน็ตมีความเร็วลดลงอันเนื่องมาจากอุปกรณ์อื่น ๆ ในพื้นที่เดียวกัน หลาย ๆ AP ที่ใช้มาตรฐาน 802.11b และ 802.11g ที่ 2.4 GHz มีค่า default ในการเริ่มต้นที่เป็นแชนแนลเดียวกัน นำไปสู่ความแออัดในบางแชนแนล Wi-Fi ขยะหรือจำนวน AP ที่มากเกินไปในพื้นที่ โดยเฉพาะอย่างยิ่งในแชนแนลข้างเคียง สามารถกีดขวางการเข้าถึงและแทรกแซงการใช้ AP ของอุปกรณ์อื่น ๆ สาเหตุจากการซ้อนทับกันของแชนแนล ในแถบความถี่ของ 802.11g/b รวมทั้งมีการลดลงของอัตราส่วนสัญญาณต่อคลื่นรบกวน SNR ระหว่าง AP ด้วยกัน สิ่งนี้จะกลายเป็นปัญหาในพื้นที่ที่มีความหนาแน่นสูง เช่น อพาร์ตเมนต์คอมเพล็กซ์ หรืออาคารสำนักงานขนาดใหญ่ที่มีหลาย Wi-Fi AP

นอกจากนี้ อุปกรณ์อื่น ๆ ที่ใช้แถบความถี่ 2.4 GHz เช่นเตาอบไมโครเวฟ อุปกรณ์ ISM กล้องรักษาความปลอดภัย อุปกรณ์ ZigBee อุปกรณ์ บลูทูธ , ผู้ส่ง วิดีโอ โทรศัพท์ไร้สาย เครื่องมอนิเตอร์ทารก และ (ในบางประเทศ) วิทยุสมัครเล่น ทั้งหมดที่สามารถก่อให้เกิดการรบกวนเพิ่มเติมอย่างมีนัยสำคัญ นอกจากนี้ยังเป็นปัญหาเมื่อหลาย ๆ เทศบาลหรือหลาย ๆ องค์กรขนาดใหญ่อื่น ๆ (เช่น มหาวิทยาลัย) พยายามที่จะให้ครอบคลุมพื้นที่ขนาดใหญ่และเกิดการทับซ้อนกัน

Data security risks[แก้]

The older wireless encryption-standard, Wired Equivalent Privacy (WEP), has been shown to be easily breakable even when correctly configured. Wi-Fi Protected Access (WPA and WPA2) encryption, which became available in devices in 2003, aimed to solve this problem. Wi-Fi access points typically default to an encryption-free (open) mode. Novice users benefit from a zero-configuration device that works out-of-the-box, but this default does not enable any wireless security, providing open wireless access to a LAN. To turn security on requires the user to configure the device, usually via a software graphical user interface (GUI). On unencrypted Wi-Fi networks connecting devices can monitor and record data (including personal information). Such networks can only be secured by using other means of protection, such as a VPN or secure Hypertext Transfer Protocol over Transport Layer Security (HTTPS).

Wi-Fi Protected Access encryption (WPA2) is considered secure, provided a strong passphrase is used. A proposed modification to WPA2 is WPA-OTP or WPA3, which stores an on-chip optically generated onetime pad on all connected devices which is periodically updated via strong encryption then hashed with the data to be sent or received. This would be unbreakable using any (even quantum) computer system as the hashed data is essentially random and no pattern can be detected if it is implemented properly. Main disadvantage is that it would need multi-GB storage chips so would be expensive for the consumers.

อ้างอิง[แก้]

  1. คลังศัพท์ไทย สวทช
  2. Secure Sockets Layer, เป็นโพรโทคอลสำหรับการเข้าระหัสบนอินเทอร์เนท
  3. "Brute forcing Wi-Fi Protected Setup" (PDF). Retrieved 2013-06-15.
  4. Phil Mercer (August 11, 2012). "Wi-fi, dual-flush loos and eight more Australian inventions". BBC News.
  5. EP 0599632
  6. Sygall, David (December 7, 2009). "How Australia's top scientist earned millions from Wi-Fi". The Sydney Morning Herald.
  7. Moses, Asher (June 1, 2010). "CSIRO to reap 'lazy billion' from world's biggest tech companies". The Age (Melbourne). Retrieved 8 June 2010.
  8. World changing Aussie inventions – Australian Geographic
  9. How the Aussie government “invented WiFi” and sued its way to $430 million | Ars Technica
  10. "Australia's Biggest Patent Troll Goes After AT&T, Verizon and T-Mobile". CBS News.
  11. Moses, Asher (June 1, 2010). "CSIRO to reap 'lazy billion' from world's biggest tech companies". The Age (Melbourne). Retrieved 8 June 2010.
  12. Australian scientists cash in on Wi-Fi invention: SMH 1 April 2012
  13. CSIRO wins legal battle over Wi-Fi patent: ABC 1 April 2012
  14. มาตรฐาน IEEE 802.11 WLAN (เว็บไซต์ศูนย์ประสานงานการรักษาความปลอดภัยคอมพิวเตอร์ ประเทศไทย)

ดูเพิ่ม[แก้]