ฟังก์ชันบ่งชี้

จากวิกิพีเดีย สารานุกรมเสรี
ฟังก์ชันบ่งชี้ของเซต A ซึ่งเป็นเซตย่อยของเซต X แสดงค่าด้วยสีแดง

ฟังก์ชันบ่งชี้ (อังกฤษ: indicator function) หรือบางครั้งเรียกว่า ฟังก์ชันลักษณะเฉพาะ คือฟังก์ชันที่นิยามบนเซต X ซึ่งบ่งชี้ว่าสมาชิกตัวใดตัวหนึ่งจะเป็นสมาชิกของเซตย่อย A ใน X หรือไม่ โดยให้ค่าเป็น 1 ถ้าสมาชิกตัวนั้นอยู่ในเซต A หรือให้ค่าเป็น 0 ถ้าสมาชิกตัวนั้นไม่อยู่ในเซต A แต่ยังคงอยู่ในเซต X

นิยาม[แก้]

ฟังก์ชันบ่งชี้ของเซตย่อย A ของเซต X คือฟังก์ชัน

\mathbf{1}_A : X \to \{ 0,1 \}

นิยามโดย

\mathbf{1}_A(x) = 
\begin{cases} 
1 &\mbox{if}\ x \in A \\
0 &\mbox{if}\ x \notin A
\end{cases}

สัญกรณ์ที่ใช้อาจพบเป็นอย่างอื่นเช่น

สมบัติพื้นฐาน[แก้]

การจับคู่ที่เกี่ยวข้องกับเซตย่อย A ของ X ไปยังฟังก์ชันบ่งชี้ของมัน 1A มีลักษณะเป็นฟังก์ชันหนึ่งต่อหนึ่ง ซึ่งเรนจ์คือเซตของฟังก์ชัน f : X → {0, 1}

ถ้า A และ B ต่างก็เป็นเซตย่อยของ X จะได้ว่า (จุด · หมายถึงการคูณ)

\mathbf{1}_{A\cap B} = \min\{\mathbf{1}_A,\mathbf{1}_B\} = \mathbf{1}_A \cdot\mathbf{1}_B
\mathbf{1}_{A\cup B} = \max\{{\mathbf{1}_A,\mathbf{1}_B}\} = \mathbf{1}_A + \mathbf{1}_B - \mathbf{1}_A \cdot\mathbf{1}_B

ส่วนเติมเต็มของฟังก์ชันบ่งชี้ของ A ซึ่งก็คือ AC จะได้ว่า

\mathbf{1}_{A^\complement} = 1-\mathbf{1}_A

ในกรณีทั่วไป ถ้าหาก A1, …, An เป็นการรวบรวมเซตย่อยของ X สำหรับค่า xX ดังนั้น

\prod_{k \in I} ( 1 - \mathbf{1}_{A_k}(x) )

จะเป็นผลคูณระหว่าง 0 และ/หรือ 1 หลายตัว ผลคูณนี้จะมีค่าเท่ากับ 1 ถ้าหาก x ไม่อยู่ในเซตย่อย Ak ใด ๆ เลย เพราะตัวคูณทุกตัวเป็น 1 ทั้งหมด หรือมิเช่นนั้นแล้วก็จะเป็น 0 เพราะมีตัวคูณอย่างน้อยหนึ่งตัวที่เป็น 0 จึงสรุปได้ว่า

\prod_{k \in I} ( 1 - \mathbf{1}_{A_k} ) = \mathbf{1}_{X - \bigcup_{k} A_k} = 1 - \mathbf{1}_{\bigcup_{k} A_k}

กระจายผลคูณทางด้านซ้าย

\mathbf{1}_{\bigcup_{k} A_k}= 1 - \sum_{F \subseteq \{1, 2, \ldots, n\}} (-1)^{|F|} \mathbf{1}_{\bigcap_F A_k} = \sum_{\emptyset \neq F \subseteq \{1, 2, \ldots, n\}} (-1)^{|F|+1} \mathbf{1}_{\bigcap_F A_k}

เมื่อ | F | คือภาวะเชิงการนับของ F สูตรนี้คือรูปแบบหนึ่งของหลักการการเพิ่มเข้า-ตัดออก

ฟังก์ชันบ่งชี้เป็นเครื่องมือสำคัญอย่างหนึ่งที่มีประโยชน์ในเรื่องคณิตศาสตร์เชิงการจัด ดังที่ให้ตัวอย่างไว้แล้วก่อนหน้านี้ สัญกรณ์นี้ถูกใช้ในแขนงวิชาอื่นเช่นกัน ตัวอย่างเช่นในทฤษฎีความน่าจะเป็น ถ้าให้ X เป็นปริภูมิความน่าจะเป็นที่มีเมเชอร์ความน่าจะเป็น P และ A เป็นเซตหาเมเชอร์ได้แล้ว 1A จะกลายเป็นตัวแปรสุ่มซึ่งมีค่าคาดหมายเท่ากับความน่าจะเป็นของ A ดังนี้

\operatorname{E}(\mathbf{1}_A)= \int_{X} \mathbf{1}_A(x)\,d\mathbb{P} = \int_{A} d\mathbb{P} = \operatorname{P}(A)

เอกลักษณ์นี้ใช้ในการพิสูจน์อย่างง่ายในอสมการของมาร์คอฟ

ในกรณีอื่นเช่นทฤษฎีอันดับ ตัวผกผันของฟังก์ชันบ่งชี้อาจมีการนิยามขึ้นได้ สิ่งนี้มักเรียกว่า ฟังก์ชันโมเบียสทั่วไป ซึ่งเป็นการวางนัยทั่วไปของตัวผกผันของฟังก์ชันบ่งชี้ในทฤษฎีจำนวนมูลฐาน (ฟังก์ชันโมเบียส)

มัชฌิม ความแปรปรวน และความแปรปรวนร่วมเกี่ยว[แก้]

กำหนดให้ปริภูมิความน่าจะเป็น (Ω, \mathcal F, P) ซึ่ง A\mathcal F และกำหนดตัวแปรสุ่มบ่งชี้ 1A : Ω → R ซึ่งนิยามโดย 1A (ω) = 1 เมื่อ ω ∈ A สำหรับกรณีอื่น 1A (ω) = 0

มัชฌิม: \operatorname{E} (\mathbf{1}_A (\omega)) = \operatorname{P} (A)
ความแปรปรวน: \operatorname{Var} (\mathbf{1}_A (\omega)) = \operatorname{P} (A) (1 - \operatorname{P} (A))
ความแปรปรวนร่วมเกี่ยว: \operatorname{Cov} (\mathbf{1}_A (\omega), \mathbf{1}_B (\omega)) = \operatorname{P} (A \cap B) - \operatorname{P} (A) \operatorname{P} (B)

ฟังก์ชันลักษณะเฉพาะในทฤษฎีเซตวิภัชนัย[แก้]

ตามคณิตศาสตร์แบบฉบับ ฟังก์ชันลักษณะเฉพาะของเซตให้ค่าเป็น 1 (เป็นสมาชิก) หรือ 0 (ไม่เป็นสมาชิก) เพียงเท่านั้น แต่ในทฤษฎีเซตวิภัชนัย ฟังก์ชันลักษณะเฉพาะจะถูกทำให้เป็นการวางนัยทั่วไป โดยให้ค่าเป็นจำนวนจริงที่อยู่ในช่วง [0, 1] หรือยิ่งไปกว่านั้นในพีชคณิตหรือโครงสร้างบางชนิด ฟังก์ชันเช่นนี้มักจะเรียกว่า ฟังก์ชันภาวะสมาชิก (membership function) ซึ่งเกี่ยวข้องกับเซตวิภัชนัย (fuzzy set) เซตวิภัชนัยเป็นการจำลองการเปลี่ยนแปลงเป็นระดับชั้นของดีกรีความเป็นสมาชิกในภาคแสดงซึ่งพบเห็นได้ในชีวิตจริงเช่น สูง-กลาง-ต่ำ ร้อน-อุ่น-เย็น-หนาว เป็นต้น

อ้างอิง[แก้]