ผลต่างระหว่างรุ่นของ "จำนวนธรรมชาติ"

จากวิกิพีเดีย สารานุกรมเสรี
เนื้อหาที่ลบ เนื้อหาที่เพิ่ม
ไม่มีความย่อการแก้ไข
บรรทัด 4: บรรทัด 4:
จำนวนธรรมชาติมีการใช้งานหลักอยู่สองประการ กล่าวคือเราสามารถใช้จำนวนธรรมชาติใน[[การนับ]] เช่น มีส้มอยู่ 3 ผลบนโต๊ะ หรือเราอาจใช้สำหรับ[[อัถถถถุถุนดับบางส่วน|การจัดอันดับ]] เช่น เมืองนี้เป็นเมืองที่มีขนาดใหญ่เป็นอันดับที่ 3 ในประเทศ เป็นต้น
จำนวนธรรมชาติมีการใช้งานหลักอยู่สองประการ กล่าวคือเราสามารถใช้จำนวนธรรมชาติใน[[การนับ]] เช่น มีส้มอยู่ 3 ผลบนโต๊ะ หรือเราอาจใช้สำหรับ[[อัถถถถุถุนดับบางส่วน|การจัดอันดับ]] เช่น เมืองนี้เป็นเมืองที่มีขนาดใหญ่เป็นอันดับที่ 3 ในประเทศ เป็นต้น


คุณสมบัติของจำนวนธรรมชาติที่เกี่ยวกับ[[การหารลงตัว]] เช่นการกระจายของ[[จำนวนเฉพาะ]] เป็นเนื้อหาใน[[ทฤษฎีจำนวน]] ปัญหาที่เกี่ยวกับการนับ เช่น [[ทฤษฎีแรมซี]] นั้นถูกศึกษาใน[[คณิตศาสตร์เชิงการจัดrandomjack ot |greenlight[[50,000]]
คุณสมบัติของจำนวนธรรมชาติที่เกี่ยวกับ[[การหารลงตัว]] เช่นการกระจายของ[[จำนวนเฉพาะ]] เป็นเนื้อหาใน[[ทฤษฎีจำนวน]] ปัญหาที่เกี่ยวกับการนับ เช่น [[ทฤษฎีแรมซี]] นั้นถูกศึกษาใน[[คณิตศาสตร์เชิงการจัด]]


== ประวัติของจำนวนธรรมชาติและจำนวนศูนย์ ==
== ประวัติของจำนวนธรรมชาติและจำนวนศูนย์ ==

รุ่นแก้ไขเมื่อ 00:18, 15 มิถุนายน 2561

ในทางคณิตศาสตร์ จำนวนธรรมชาติ อาจหมายถึง จำนวนเต็มบวก หรือ จำนวนนับ (1, 2, 3, 4, ...) หรือ จำนวนเต็มไม่เป็นลบ (0, 1, 2, 3, 4, ...) ความหมายแรกมีการใช้ในทฤษฎีจำนวน ส่วนแบบหลังได้ใช้งานใน ตรรกศาสตร์,เซตและวิทยาการคอมพิวเตอร์ ถุ จำนวนธรรมชาติมีการใช้งานหลักอยู่สองประการ กล่าวคือเราสามารถใช้จำนวนธรรมชาติในการนับ เช่น มีส้มอยู่ 3 ผลบนโต๊ะ หรือเราอาจใช้สำหรับการจัดอันดับ เช่น เมืองนี้เป็นเมืองที่มีขนาดใหญ่เป็นอันดับที่ 3 ในประเทศ เป็นต้น

คุณสมบัติของจำนวนธรรมชาติที่เกี่ยวกับการหารลงตัว เช่นการกระจายของจำนวนเฉพาะ เป็นเนื้อหาในทฤษฎีจำนวน ปัญหาที่เกี่ยวกับการนับ เช่น ทฤษฎีแรมซี นั้นถูกศึกษาในคณิตศาสตร์เชิงการจัด

ประวัติของจำนวนธรรมชาติและจำนวนศูนย์

สันนิษฐานว่าจำนวนธรรมชาติ มีแหล่งกำเนิดอยู่ที่การนับ, เริ่มด้วยเลขหนึ่ง จำนวนธรรมชาติในนามธรรมได้เกิดขึ้นครั้งแรกจากการใช้ตัวเลข เพื่อแสดงให้ค่าจำนวน จนพัฒนาขึ้นมาในการบันทึกจำนวนที่มากขึ้น ยกตัวอย่างเช่น ชาวบาบิลอนสร้างระบบหลักจำนวนขึ้นมาซึ่งจำเป็นมากในระบบเลขหนึ่งถึงสิบ, ชาวอียิปต์ได้สร้างระบบจำนวนอย่างแตกต่างในภาษาเฮียโรกริฟต์ สำหรับหนึ่งถึงสิบและเลขยกกำลังตั้งแต่หลักสิบถึงหลักล้าน ตั้งแต่ที่ถ้ำหินของคาร์หนัก(เคหกรรมของชาวอียิปต์)ก่อนคริสต์ศักราช 1500 ปี จนถึงลูฟฟ์ที่ปารีส แสดงจำนวน 276 โดย 2 แทนที่หลักร้อย, 7 แทนที่หลักสิบ, 6 แทนที่หลักหน่วย และดังเช่นการเขียนจำนวน 4,622 ด้วย

นิยามอย่างเป็นรูปนัย

นิยามอย่างเป็นรูปนัยเชิงคณิตศาสตร์ของจำนวนธรรมชาติพัฒนาตลอดช่วงประวัติศาสตร์โดยมีอุปสรรคบางประการ สัจพจน์ของเปอาโนกำหนดเงื่อนไขที่นิยามสมบูรณ์ใดๆ ต้องสอดคล้อง การสร้างบางประการแสดงว่าแบบจำลองทางคณิตศาสตร์เมื่อกำหนดทฤษฎีเซต ต้องมีอยู่

สัจพจน์ของเปอาโน

สัจพจน์ของเปอาโนเป็นที่มาของทฤษฎีอย่างเป็นรูปนัยของจำนวนธรรมชาติ สัจพจน์ของเปอาโนมีดังนี้:

  • เป็นจำนวนธรรมชาติ
  • ทุกจำนวนธรรมชาติ มีตัวตามหลัง เขียนแทนด้วย จริงๆ แล้ว คือ
  • ไม่มีจำนวนธรรมชาติที่ตัวตามหลังเป็น
  • เป็น ฟังก์ชันหนึ่งต่อหนึ่ง กล่าวคือจำนวนธรรมชาติที่ต่างกันมีตัวตามหลังที่ต่างกัน: ถ้า แล้ว
  • ถ้า มีสมบัติอย่างหนึ่ง และ ตัวตามหลังของทุกๆ จำนวนนับที่มีสมบัตินั้น ก็มีสมบัตินั้น แล้วทุกจำนวนธรรมชาติจะมีสมบัตินั้น (สัจพจน์นี้ยืนยันว่าการพิสูจน์โดยการอุปนัยเชิงคณิตศาสตร์ถูกต้อง)

หมายเหตุ ในนิยามข้างต้นไม่ได้หมายถึงเลขศูนย์เสมอไป หมายถึงบางจำนวนที่สอดคล้องกับสัจพจน์ของเปอาโน เมื่อพิจารณาร่วมกับ"ฟังก์ชันตัวตามหลัง"ตามเหมาะสม ทุกระบบที่สอดคล้องกับสัจพจน์เหล่านี้สมมูลกันตามรูปแบบเชิงตรรก อย่างไรก็ตาม มีแบบจำลองสัจพจน์ของเปอาโนที่นับไม่ได้ ซึ่งเรียกว่าแบบจำลองเลขคณิตแบบไม่มาตรฐาน และยืนยันโดยUpward Löwenheim-Skolem Theorem ชื่อ ใช้ในที่นี้สำหรับสมาชิกตัวแรก (มีการเสนอชื่อ"สมาชิกตัวที่ศูนย์" เพื่อให้ใช้ "สมาชิกตัวแรก" เรียก ใช้ "สมาชิกตัวที่สอง" เรียก ฯลฯ) ซึ่งเป็นสมาชิกที่ไม่มีตัวนำหน้า เช่นจำนวนธรรมชาติที่เริ่มด้วย ก็สอดคล้องสัจพจน์ ถ้าสัญลักษณ์ ถือเป็นจำนวนธรรมชาติ สัญลักษณ์ ถือเป็น ฯลฯ ที่จริงแล้วในต้นฉบับของเปอาโน จำนวนธรรมชาติจำนวนแรกคือ

การสร้างบนพื้นฐานทฤษฎีเซต

การสร้างมาตรฐาน

การสร้างมาตรฐานในวิชาทฤษฎีเซต เป็นกรณีพิเศษของการสร้างเรียงลำดับแบบวอน นิวมันน์[1] กำหนดนิยามของจำนวนธรรมชาติดังนี้:

กำหนด 0 := { } เป็นเซตว่าง
และนิยาม S(a) = a ∪ {a} สำหรับทุกเซต a S(a) คือตัวตามหลัง a และเรียก S ว่า ฟังก์ชันตัวตามหลัง
โดยสัจพจน์ของอนันต์ เซตของจำนวนธรรมชาติทุกจำนวนมีอยู่ เซตนี้คืออินเตอร์เซกชันของทุกเซตที่มีสมบัติปิดภายใต้ฟังก์ชันตัวตามหลัง จึงสอดคล้องสัจพจน์ของเปอาโน
ทุกจำนวนธรรมชาติเท่ากับเซตของจำนวนธรรมชาติทั้งหมดที่น้อยกว่าจำนวนนั้นๆ นั่นคือ
  • 0 = { }
  • 1 = {0} = {{ }}
  • 2 = {0, 1} = {0, {0}} = {{ }, {{ }}}
  • 3 = {0, 1, 2} = {0, {0}, {0, {0}}} ={{ }, {{ }}, {{ }, {{ }}}}
  • n = {0, 1, 2, ..., n−2, n−1} = {0, 1, 2, ..., n−2,} ∪ {n−1} = {n−1} ∪ (n−1) = S(n−1)
ฯลฯ

อ้างอิง

  1. Von Neumann 1923

ดูเพิ่ม

แหล่งข้อมูลอื่น