ผลต่างระหว่างรุ่นของ "กลศาสตร์ดั้งเดิม"

จากวิกิพีเดีย สารานุกรมเสรี
เนื้อหาที่ลบ เนื้อหาที่เพิ่ม
KittapatR (คุย | ส่วนร่วม)
ไม่มีความย่อการแก้ไข
KittapatR (คุย | ส่วนร่วม)
ไม่มีความย่อการแก้ไข
บรรทัด 49: บรรทัด 49:
|[[แรง]]||กิโลกรัม·เมตร·วินาที<sup>−2</sup>
|[[แรง]]||กิโลกรัม·เมตร·วินาที<sup>−2</sup>
|-
|-
|[[แรงบิด]] (Torque)||กิโลกรัม·เมตร<sup>2</sup>·วินาที<sup>−2</sup>
|[[ทอร์ก]] (Torque)||กิโลกรัม·เมตร<sup>2</sup>·วินาที<sup>−2</sup>
|-
|-
|[[พลังงาน]]||กิโลกรัม·เมตร<sup>2</sup>·วินาที<sup>−2</sup>
|[[พลังงาน]]||กิโลกรัม·เมตร<sup>2</sup>·วินาที<sup>−2</sup>
บรรทัด 86: บรรทัด 86:
ในกลศาสตร์ดั้งเดิม ความเร็วสามารถเพิ่มและลดได้โดยตรง ยกตัวอย่างเช่น ถ้ารถโดยสารประจำทางสายหนึ่งเดินทางด้วยความเร็ว 40 กม./ชม.ทิศตะวันตก แล้วมีรถจักรยานยนต์คันหนึ่งเดินทางด้วยความเร็ว 25 กม./ชม. ไปยังทิศตะวันออก เมื่อมองจากรถจักรยานยนต์ซึ่งมีอัตราเร็วต่ำกว่า รถโดยสารจะเดินทางด้วยความเร็ว 40-25 = 15 กม./ชม. ด้านทิศตะวันตก อีกด้านหนึ่ง ในด้านของรถโดยสารประจำทาง จะเห็นรถจักรยานเดินทางด้วยความเร็ว 15 กม./ชม. ด้านทิศตะวันออก ดังนั้นความเร็วสามารถเพิ่มหรือลดได้เป็นปริมาณเวกเตอร์ ซึ่งต้องจัดการโดยเวกเตอร์เชิงวิเคราะห์
ในกลศาสตร์ดั้งเดิม ความเร็วสามารถเพิ่มและลดได้โดยตรง ยกตัวอย่างเช่น ถ้ารถโดยสารประจำทางสายหนึ่งเดินทางด้วยความเร็ว 40 กม./ชม.ทิศตะวันตก แล้วมีรถจักรยานยนต์คันหนึ่งเดินทางด้วยความเร็ว 25 กม./ชม. ไปยังทิศตะวันออก เมื่อมองจากรถจักรยานยนต์ซึ่งมีอัตราเร็วต่ำกว่า รถโดยสารจะเดินทางด้วยความเร็ว 40-25 = 15 กม./ชม. ด้านทิศตะวันตก อีกด้านหนึ่ง ในด้านของรถโดยสารประจำทาง จะเห็นรถจักรยานเดินทางด้วยความเร็ว 15 กม./ชม. ด้านทิศตะวันออก ดังนั้นความเร็วสามารถเพิ่มหรือลดได้เป็นปริมาณเวกเตอร์ ซึ่งต้องจัดการโดยเวกเตอร์เชิงวิเคราะห์


ในทางคณิตศาสตร์ ถ้าความเร็วของวัตถุแรกให้เป็น '''u'''=u'''d''' และความเร็วของวัตถุที่สองให้เป็น '''v='''v'''e''' โดย v และ u เป็นอัตราเร็วของวัตถุแรก และวัตถุที่สองตามลำดับ และ '''d''' กับ '''e''' เป็นเวกเตอร์หนึ่งหน่วยซึ่งแสดงถึงทิศทางการเคลื่อนที่ของวัตถุ ดังนั้นความเร็วของวัตถุแรกที่เห็นโดยวัตถุที่สอง คือ
ในทางคณิตศาสตร์ ถ้าความเร็วของวัตถุแรกให้เป็น '''u'''=u'''d''' และความเร็วของวัตถุที่สองให้เป็น '''v='''v'''e''' โดย v และ u เป็นอัตราเร็วของวัตถุแรก และวัตถุที่สองตามลำดับ และ '''d''' กับ '''e''' เป็น[[เวกเตอร์หนึ่งหน่วย]]ซึ่งแสดงถึงทิศทางการเคลื่อนที่ของวัตถุ ดังนั้นความเร็วของวัตถุแรกที่เห็นโดยวัตถุที่สอง คือ


<math>\mathbf{u}' = \mathbf{u} - \mathbf{v} \, .</math>
<math>\mathbf{u}' = \mathbf{u} - \mathbf{v} \, .</math>
บรรทัด 110: บรรทัด 110:


==== กรอบอ้างอิง ====
==== กรอบอ้างอิง ====
{{Main|กรอบอ้างอิงเฉื่อย|การแปลงแบบกาลิเลโอ}}ขณะที่ตำแหน่ง ความเร็ว และความเร่งของอนุภาคสามารถอธิบายได้ด้วยผู้สังเกตจากสถานะการเคลื่อนที่ใด ๆ ซึ่งกลศาสตร์ดั้งเดิมสามารถสมมุติได้ว่ากรอบอ้างอิงพิเศษที่อยู่ในธรรมชาติอยู่ในรูปแบบง่าย ๆ มีอยู่จริง โดยเรียกกรอบเหล่านี้ว่ากรอบอ้างอิงเฉื่อย จากนิยามเบื้องต้น กรอบอ้างอิงเฉื่อยเป็นการมองจากสิ่ง ๆ หนึ่งที่ไม่มีแรงมากระทำมา กล่าวคือกรอบอ้างอิงเฉื่อยจะไม่เคลื่อนที่หรือเคลื่อนที่ด้วยคงที่ด้วยเส้นตรง กรอบเหล่านี้จะถูกกำหนดไว้โดยแหล่งที่สามารถยืนยันได้ที่เป็นแรงมากระทำต่อผู้สังเกต ซึ่งคือ สนาม เช่น [[สนามไฟฟ้า]] (เกิดจากประจุไฟฟ้าสถิต) [[สนามแม่เหล็ก]] (เกิดจากประจุที่เคลื่อนที่) [[สนามแรงโน้มถ่วง]] (เกิดจากมวล) และอื่น ๆ กรอบอ้างอิงไม่เฉื่อยเป็นการมองจากสิ่ง ๆ หนึ่งที่มีความเร่งโดยอ้างอิงจากกรอบอ้างอิงเฉื่อย และในกรอบอ้างอิงไม่เฉื่อย อนุภาคจะปรากฏว่ามีแรงอื่น ๆ มากระทำที่ไม่สามารถอธิบายได้โดยสนามที่มีอยู่ โดยเรียกได้หลายอย่างทั้ง แรงในนิยาย แรงเฉื่อย หรือแรงเทียม ซึ่งสมการของการเคลื่อนที่จะมีแรงเหล่านี้เพิ่มในสมการเพื่อให้ตรงต่อผลลัพธ์จากการสังเกตในกรอบที่มีความเร่ง ในทางปฏิบัติ กรอบอ้างอิงเฉื่อยขึ้นอยู่กับดาวที่อยู่ไกล (จุดที่อยู่ไกลมาก ๆ) ซึ่งไม่มีความเร่งถือเป็นการประมาณการที่ดีสำหรับกรอบอ้างอิงเฉื่อย
{{Main|กรอบอ้างอิงเฉื่อย|การแปลงแบบกาลิเลโอ}}ขณะที่ตำแหน่ง ความเร็ว และความเร่งของอนุภาคสามารถอธิบายได้ด้วยผู้สังเกตจากสถานะการเคลื่อนที่ใด ๆ กลศาสตร์ดั้งเดิมสันนิษฐานว่าการปรากฏของ

พิจารณากรอบอ้างอิงเฉื่อย 2 กรอบ คือ ''S'' และ ''S'<nowiki/>'' ผู้สังเกตแต่ละคนจะตีกรอบเหตุการณ์ให้อยู่ในพิกัดปริภูมิ-เวลาของ (''x'',''y'',''z'',''t'') สำหรับกรอบ ''S'' และ (''x'<nowiki/>'',''y'<nowiki/>'',''z'<nowiki/>'',''t'<nowiki/>'') ในกรอบ ''S'<nowiki/>'' โดยให้เวลาที่สังเกตนั้นเท่ากันในทุกกรอบอ้างอิง และถ้าเราให้ ''x ='' ''x'<nowiki/>'' เมื่อ ''t ='' 0 จากนั้นความสัมพพันธ์ระหว่างพิกัดปริภูมิ-เวลาของเหตุการณ์เดียวกันที่มองจาก ''S'' และ ''S''' ซึ่งเคลื่อนที่อยู่ด้วยความเร็วสัมพัทธ์ที่ ''U'' ในทิศทาง ''x'' คือ

''<var>x'</var> = x − u·t''

''<var>y'</var> = y''

''<var>z'</var> = z''

''<var>t'</var> = t''

โดยชุดสูตรเหล่านี้ถูกนิยามไว้ว่าเป็นการแปลงแบบกลุ่มหรือรู้จักในชื่อว่า การแปลงแบบกาลิเลโอ กลุ่มนี้มีข้อจำกัดในส่วนของกลุ่มปวงกาเร (Poincaré group) ที่ใช้ในทฤษฎีสัมพัทธภาพพิเศษ ซึ่งข้อจำกัดที่ว่าจะมีผลเมื่อความเร็ว ''u'' มีค่าน้อยมากเมื่อเทียบกับ ''c'' หรือความเร็วแสง

การแปลงจะมีผลที่ตามมาดังนี้

'''v'''''<nowiki/>'<nowiki/>='''''v'''-'''u'''(ความเร็ว '''v'''''<nowiki/>'<nowiki/>''<nowiki/> ของอนุภาคจากมุมมองของ''S'' ช้ากว่า '''v''' จากมุมมองของ ''S'' ที่เท่ากับ '''u''')

'''a'''′ ''='' '''a''' (ความเร่งคงที่เสมอในกรอบอ้างอิงเฉื่อยใด ๆ)

'''F'''′ = '''F''' (แรงที่กระทำเท่าเดิมในกรอบอ้างอิงเฉื่อยใด ๆ)

ความเร็วแสงไม่ใช่ค่าคงที่ในกลศาสตร์ดั้งเดิม หรือไม่ใช่เป็นตำแหน่งพิเศษที่ถูกให้โดยความเร็วแสงในกลศาสตร์สัมพัทธภาพซึ่งตรงข้ามกับกลศาสตร์ดั้งเดิม

สำหรับบางปัญหา มันอาจจะต้องใช้พิกัดที่หมุนอยู่เป็นกรอบอ้างอิงเพื่อความสะดวกในการวิเคราะห์ปัญหา หรืออาจจะใช้กรอบอ้างอิงที่เหมาะสม หรืออาจเพิ่มแรงหนีสู่ศูนย์กลาง และ แรงโคริออลิส ซึ่งเป็นแรงเทียม


=== แรงในกฎข้อที่สองของนิวตัน ===
=== แรงในกฎข้อที่สองของนิวตัน ===
{{Main|แรง|กฎการเคลื่อนที่ของนิวตัน}}นิวตันเป็นคนแรกที่อธิบายความสัมพันธ์ทางคณิตศาสตร์ระหว่างแรงและโมเมนตัม นักฟิสิกส์บางคนตีความกฎการเคลื่อนที่ข้อสองของนิวตันว่าเป็นนิยามของรงและมวล ในขณะที่คนอื่นพิจารณาให้มันเป็นสัจพจน์พื้นฐาน หากจะตีความอีกรูปแบบหนึ่งในผลที่ตามมาทางคณิตศาสตร์ที่เหมือนกัน หรือในทางประวัติศาสตร์เรียกว่า "กฎข้อที่สองของนิวตัน" ซึ่งก็คือ
{{Main|แรง|กฎการเคลื่อนที่ของนิวตัน}}

<math>\mathbf{F} = {\mathrm{d}\mathbf{p} \over \mathrm{d}t} = {\mathrm{d}(m \mathbf{v}) \over \mathrm{d}t}</math>

ปริมาณ ''m'''''v''' ถูกเรียกว่า โมเมนตัม (คาโนนิคัล) แรงลัพธ์ของอนุภาคจะเท่ากับอัตราการเปลี่ยนแปลงของโมเมนตัมของอนุภาคเมื่อเทียบกับเวลา เมื่อนิยามของความเร่งคือ '''a''' ''='' d'''v'''/d''t'' กฎสามารถเขียนในรูปที่ง่ายและคุ้นเคยกว่า คือ

<math>\bold{F}=m\bold{a}</math>

ถ้ารู้ว่าแรงที่กระทำต่ออนุภาคมีค่าคงที่ กฎของนิวตันข้อที่สองเพียงพอที่จะอธิบายการเคลื่อนที่ของอนุภาค แต่ถ้าแรงใดแรงหนึ่งขึ้นกับความสัมพันธ์แบบอิสระ สามารถแทนความสัมพันธ์นั้นได้ในกฎของนิวตันข้อสอง จึงได้สมการเชิงอนุพันธ์สามัญ (Ordinary differential function) ซึ่งสามารถเรียกว่า ''สมการการเคลื่อนที่''

ยกตัวอย่างในกรณีหนึ่ง สมมุติว่าแรงเสียดทานกระทำเพียงบนอนุภาคเท่านั้นและสามารถจำลองโดยใช้ฟังก์ชันของความเร็วของอนุภาค เช่น

<math>\bold{F}_\mathrm{R}=-\lambda\bold{v}</math>

โดยให้ λ เป็นค่าคงที่บวก และสถานะของเครื่องหมายลบคือความเร็วตรงกันข้ามกับเวกเตอร์อ้างอิง ดังนั้นจะได้สมการการเคลื่อนที่ว่า

<math>-\lambda\bold{v}=m\bold{a}=m{\operatorname{d}\!\bold{v} \over \operatorname{d}\!t}</math><blockquote>ซึ่งสามารถแก้สมการได้โดยวิธีปริพันธ์แทนที่สมการเดิม</blockquote><math>\bold{v}=\bold{v}_0e^{{-\lambda t \over m}}</math>

โดยให้ '''v'''<sub>0</sub> เป็นความเร็วในขณะเริ่มต้น หมายความว่าความเร็วของอนุภาคมีการลดลงเชิงเอ็กซ์โพเนนเชียล ความเร็วมีค่าเข้าใกล้ 0 เมื่อเวลาผ่านไปนานขึ้น ในกรณีนี้ สามารถเทียบเท่าได้กับพลังงานจลน์ที่ถูกซับไปจากการเสียดทาน (กลายเป็นพลังงานความร้อนที่เกี่ยวเนื่องกับการอนุรักษ์พลังงาน) และอนุภาคเคลื่อนที่ช้าลง


=== งานและพลังงาน ===
=== งานและพลังงาน ===

รุ่นแก้ไขเมื่อ 23:32, 28 กันยายน 2559

กลศาสตร์ดั้งเดิม เป็นหนึ่งในสองวิชาที่สำคัญที่สุดของกลศาสตร์ (โดยอีกวิชาหนึ่ง คือ กลศาสตร์ควอนตัม) ซึ่งอธิบายถึงการเคลื่อนที่ของวัตถุต่าง ๆ ภายใต้อิทธิพลจากระบบของแรง โดยวิชานี้ถือเป็นวิชาที่ครอบคลุมในด้านวิทยาศาสตร์ วิศวกรรม และเทคโนโลยีมากที่สุดวิชาหนึ่ง อีกทั้งยังเป็นวิชาที่เก่าแก่ ซึ่งมีการศึกษาในการเคลื่อนที่ของวัตถุตั้งแต่สมัยโบราณ โดยกลศาสตร์ดั้งเดิมรู้จักในวงกว้างว่า กลศาสตร์นิวตัน

ในทางฟิสิกส์ กลศาสตร์ดั้งเดิมอธิบายการเคลื่อนที่ของวัตถุขนาดใหญ่โดยแปลงการเคลื่อนที่ต่าง ๆ ให้กลายเป็นส่วนของเครื่องจักรกล เหมือนกันกับวัตถุทางดาราศาสตร์ อาทิ ยานอวกาศ ดาวเคราะห์ ดาวฤกษ์ และ ดาราจักร รวมถึงครอบคลุมไปยังทุกสถานะของสสาร ทั้งของแข็ง ของเหลว และแก๊ส โดยจะให้ผลลัพธ์ที่มีความแม่นยำสูง แต่เมื่อวัตถุมีขนาดเล็กหรือมีความเร็วที่สูงใกล้เคียงกับความเร็วแสง กลศาสตร์ดั้งเดิมจะมีความแม่นยำที่ต่ำลง ต้องใช้กลศาสตร์ควอนตัมในการศึกษาแทนกลศาสตร์ดั้งเดิมเพื่อให้มีความแม่นยำในการคำนวณสูงขึ้น โดยกลศาสตร์ควอนตัมจะเหมาะสมที่จะศึกษาการเคลื่อนที่ของวัตถุที่มีขนาดเล็กมาก ซึ่งได้ถูกปรับแต่งให้เข้ากับลักษณะของอะตอมในส่วนของความเป็นคลื่น-อนุภาคในอะตอมและโมเลกุล แต่เมื่อกลศาสตร์ทั้งสองไม่สามารถใช้ได้ จากกรณีที่วัตถุขนาดเล็กเคลื่อนที่ด้วยความเร็วสูง ทฤษฎีสนามควอนตัมจึงเป็นตัวเลือกที่นำมาใช้ในการคำนวณแทนกลศาสตร์ทั้งสอง

คำว่า กลศาสตร์ดั้งเดิม ได้ถูกใช้เป็นครั้งแรกในช่วงต้นคริสต์ศตวรรษที่ 20 เพื่อกล่าวถึงระบบทางฟิสิกส์ของไอแซก นิวตันและนักปรัชญาธรรมชาติคนอื่นที่อยู่ร่วมสมัยในช่วงคริสต์ศตวรรษที่ 17 ประกอบกับทฤษฎีทางดาราศาสตร์ในช่วงแรกเริ่มของโยฮันเนส เคปเลอร์จากข้อมูลการสังเกตที่มีความแม่นยำสูงของไทโค บราเฮ และการศึกษาในการเคลื่อนที่ต่าง ๆ ที่อยู่บนโลกของกาลิเลโอ โดยมุมมองของฟิสิกส์ได้ถูกเปลี่ยนแปลงเรื่อยมาอย่างยาวนานก่อนที่จะมีทฤษฎีสัมพัทธภาพและกลศาสตร์ควอนตัม ซึ่งแต่เดิม ในบางแห่งทฤษฎีสัมพัทธภาพของไอน์สไตน์ไม่ถูกจัดอยู่ในกลศาสตร์ดั้งเดิม แต่อย่างไรก็ตามเมื่อเวลาผ่านไป หลายแห่งเริ่มจัดให้สัมพัทธภาพเป็นกลศาสตร์ดั้งเดิมในรูปแบบที่แม่นยำ และถูกพัฒนามากที่สุด

แต่เดิมนั้น การพัฒนาในส่วนของกลศาสตร์ดั้งเดิมมักจะกล่าวถึงกลศาสตร์นิวตัน ซึ่งมีการใช้หลักการทางฟิสิกส์ประกอบกับวิธีการทางคณิตศาสตร์โดยนิวตัน ไลบ์นิซ และบุคคลอื่นที่เกี่ยวข้อง และวิธีการปกติหลายอย่างได้ถูกพัฒนา นำมาสู่การกำหนดกลศาสตร์ครั้งใหม่ ไม่ว่าจะเป็น กลศาสตร์แบบลากรางจ์ และกลศาสตร์แฮมิลตัน ซึ่งสิ่งเหล่านี้ได้ถูกพัฒนาขึ้นเป็นอย่างมากในช่วงคริสต์ศตวรรษที่ 18 และ 19 อีกทั้งได้ขยายความรู้เป็นอย่างมากพร้อมกับกลศาสตร์นิวตันโดยเฉพาะอย่างยิ่งการนำกลศาสตร์เหล่านี้ไปใช้ในกลศาสตร์เชิงวิเคราะห์อีกด้วย

หลักการของกลศาสตร์ดั้งเดิม

เพื่อความง่ายในการวิเคราะห์ วัตถุที่อยู่ในโลกของความเป็นจริงจะถูกจำลองให้อยู่ในรูปของอนุภาคจุด (ไม่สนใจในกขนาของวัตถุด) โดยการเคลื่อนที่ของอนุภาคจุดจะมีการกำหนเป็นพารามิเตอร์ที่มีค่าน้อยุ ได้แก่ ตำแหน่งของวัตถุ มวล และแรงที่กระทำต่อวัตถุ ซึ่งจะกำหนดไว้เป็นตัวเลขที่อาจมีหน่วยกำหนดไว้ และกล่าวถึงมาเป็นลำดับ

เมื่อมองจากความเป็นจริง วัตถุต่าง ๆ ที่กลศาสตร์ดั้งเดิมกำหนดไว้ว่าวัตถุมีขนาดไม่เป็นศูนย์เสมอ (ซึ่งถ้าวัตถุที่มีขนาดเล็กมาก ๆ อย่างเช่น อิเล็กตรอน กลศาสตร์ควอนตัมจะอธิบายได้อย่างแม่นยำกว่ากลศาสตร์ดั้งเดิม) วัตถุที่มีขนาดไม่เป็นศูนย์จะมีความซับซ้อนในการศึกษามากกว่าอนุภาคจุดตามทฤษฎี เพราะวัตถุมีความอิสระของมันเอง (Degrees of freedom) อาทิ ลูกตะกร้อสามารถหมุนได้ขณะเคลื่อนที่หลังจากที่ถูกเดาะขึ้นไปบนอากาศ อย่างไรก็ตาม ผลลัพธ์สำหรับอนุภาคจุดสามารถใช้ในการศึกษาจำพวกวัตถุทั่วไปได้โดยสมมุติว่าเป็นวัตถุนั้น หรือสร้างอนุภาคจุดสมมุติหลาย ๆ จุดขึ้นมา ดังเช่นจุดศูนย์กลางมวลของวัตถุที่แสดงเป็นอนุภาคจุด

กลศาสตร์ดั้งเดิมใช้สามัญสำนึกเป็นแนวว่าสสารและแรงเกิดขึ้นและมีปฏิสัมพันธ์กันอย่างไร โดยตั้งสมมุติฐานว่าสสารและพลังงานมีความแน่นอน และมีคุณสมบัติที่รู้อยู่แล้ว ได้แก่ ตำแหน่งของวัตถุในปริภูมิ (Space) และความเร็วของวัตถุ อีกทั้งยังสามารถสมมุติว่ามีอิทธิพลโดยตรงกับสิ่งที่อยู่รอบวัตถุในขณะนั้นได้อีกด้วย (หรือเรียกอีกอย่างหนึ่งว่า Principle of locality)

ตำแหน่งและอนุพันธ์ของตำแหน่ง

หน่วยอนุพันธ์ SI ที่เกี่ยวข้องกับเครื่องกล
(โดยไม่เกี่ยวข้องกับแม่เหล็กไฟฟ้าหรือฟิสิกส์อุณหภาพ)
ในหน่วยของกิโลกรัม เมตร และวินาที
ตำแหน่ง เมตร
ตำแห่งเชิงมุม/มุม ไม่มีหน่วย (เรเดียน)
ความเร็ว เมตร·วินาที−1
ความเร็วเชิงมุม วินาที−1
ความเร่ง เมตร·วินาที−2
ความเร่งเชิงมุม วินาที−2
ความกระตุก (Jerk) เมตร·วินาที−3
"ความกระตุกเชิงมุม" (Angular jerk) วินาที−3
พลังงานจำเพาะ (Specific Energy) เมตร2·วินาที−2
อัตราการดูดซับ (Absorbed dose rate) เมตร2·วินาที−3
โมเมนต์ความเฉื่อย กิโลกรัม·เมตร2
โมเมนตัม กิโลกรัม·เมตร·วินาที−1
โมเมนตัมเชิงมุม กิโลกรัม·เมตร2·วินาที−1
แรง กิโลกรัม·เมตร·วินาที−2
ทอร์ก (Torque) กิโลกรัม·เมตร2·วินาที−2
พลังงาน กิโลกรัม·เมตร2·วินาที−2
กำลัง กิโลกรัม·เมตร2·วินาที−3
ความดัน และ ความหนาแน่นของพลังงาน กิโลกรัม·เมตร−1·วินาที−2
แรงตึงผิว กิโลกรัม·วินาที−2
ค่านิจสปริง (Spring constant) กิโลกรัม·วินาที−2
ความเข้มตกกระทบ (Irradiance)
และ ความเข้มของพลังงาน (Energy flux)
กิโลกรัม·วินาที−3
ความหนืดจลน์ (Kinematic Viscosity) เมตร2·วินาที−1
ความหนืดพลวัต (Dynamic Viscosity) กิโลกรัม·เมตร−1·วินาที−1
ความหนาแน่น (ความหนาแน่นมวล) กิโลกรัม·เมตร−3
ความหนาแน่น (ความหนาแน่นน้ำหนัก) กิโลกรัม·เมตร−2·วินาที−2
ค่าความหนาแน่น (Number density) เมตร−3
การกระทำ (Action) กิโลกรัม·เมตร2·วินาที-1

ตำแหน่ง ของอนุภาคจุดได้ถูกกำหนดตามจุดอ้างอิงที่กำหนดได้เองในปริภูมิ เรียกว่า จุดกำเนิด (Origin) ซึ่งในปริภูมิ จะให้ตำแหน่งอยู่ในระบบพิกัด โดยในระบบพิกัดอย่างง่ายมักกำหนดตำแหน่งวัตถุ และมีลูกศรที่มีทิศทางเป็นเวกเตอร์ในกลศาสตร์ดั้งเดิม โดยเริ่มจากจุดกำเนิดลากไปยังตำแหน่งของวัตถุ เช่น ตำแหน่ง r อยู่ในฟังก์ชันของ t (เวลา) ในสัมพัทธภาพช่วงก่อนไอน์สไตน์ (หรือเป็นที่รู้จักในชื่อ สัมพัทธภาพกาลิเลโอ) เวลาเป็นสิ่งสัมบูรณ์ คือ เวลาที่สังเกตมีระยะเท่ากันหมดในทุกผู้สังเกต ยิ่งไปกว่าเวลาสัมบูรณ์ กลศาสตร์ดั้งเดิมยังให้โครงสร้างของปริภูมิมีลักษณะโครงสร้างเป็นเรขาคณิตยูคลิดอีกด้วย

ความเร็วและอัตราเร็ว

ความเร็ว หรือ อัตราการเปลี่ยนของตำแหน่งต่อเวลา ได้นิยามไว้ด้วยอนุพันธ์เวลาของตำแหน่งดังนี้

โดยกำหนดให้ v เป็นความเร็ว dr เป็นเวกเตอร์ระยะห่างของตำแหน่งเดิมและตำแหน่งใหม่ dt เป็นระยะเวลาที่ใช้เวลาเคลื่อนที่ไปยังตำแหน่งใหม่

ในกลศาสตร์ดั้งเดิม ความเร็วสามารถเพิ่มและลดได้โดยตรง ยกตัวอย่างเช่น ถ้ารถโดยสารประจำทางสายหนึ่งเดินทางด้วยความเร็ว 40 กม./ชม.ทิศตะวันตก แล้วมีรถจักรยานยนต์คันหนึ่งเดินทางด้วยความเร็ว 25 กม./ชม. ไปยังทิศตะวันออก เมื่อมองจากรถจักรยานยนต์ซึ่งมีอัตราเร็วต่ำกว่า รถโดยสารจะเดินทางด้วยความเร็ว 40-25 = 15 กม./ชม. ด้านทิศตะวันตก อีกด้านหนึ่ง ในด้านของรถโดยสารประจำทาง จะเห็นรถจักรยานเดินทางด้วยความเร็ว 15 กม./ชม. ด้านทิศตะวันออก ดังนั้นความเร็วสามารถเพิ่มหรือลดได้เป็นปริมาณเวกเตอร์ ซึ่งต้องจัดการโดยเวกเตอร์เชิงวิเคราะห์

ในทางคณิตศาสตร์ ถ้าความเร็วของวัตถุแรกให้เป็น u=ud และความเร็วของวัตถุที่สองให้เป็น v=ve โดย v และ u เป็นอัตราเร็วของวัตถุแรก และวัตถุที่สองตามลำดับ และ d กับ e เป็นเวกเตอร์หนึ่งหน่วยซึ่งแสดงถึงทิศทางการเคลื่อนที่ของวัตถุ ดังนั้นความเร็วของวัตถุแรกที่เห็นโดยวัตถุที่สอง คือ

เช่นเดียวกับวัตถุที่หนึ่งที่มองกับวัตถุที่สอง

เมื่อวัตถุเดินทางในทิศทางเดียวกัน สามารถทำสมการให้เป็นรูปอย่างง่ายดังนี้

หรือถ้าไม่คำนึงถึงทิศทาง ความต่างนี้จะอยู่ในรูปของอัตราเร็วเท่านั้น ดังสมการนี้

ความเร่ง

ความเร่ง หรืออัตราการเปลี่ยนแปลงของความเร็วคืออนุพันธ์เวลาของความเร็ว (อนุพันธ์เวลาที่สองของตำแหน่ง) สามารถแสดงได้ดังนี้

โดยความเร่งจะแสดงถึงความเร็วที่เปลี่ยนแปลงไปในช่วงเวลานั้น ๆ ไม่ว่าเป็นอัตราเร็ว ทิศทางของความเร็ว หรือทั้งสองอย่าง ซึ่งถ้าความเร็วลดลงไปเรื่อย ๆ เพียงอย่างเดียว ก็สามารถเรียกได้ว่าความหน่วงเช่นกัน แต่ปกติแล้ว ทั้งความหน่วงและความเร่งมักถูกเรียกง่าย ๆ ว่าความเร่งเพียงอย่างเดียว

กรอบอ้างอิง

ขณะที่ตำแหน่ง ความเร็ว และความเร่งของอนุภาคสามารถอธิบายได้ด้วยผู้สังเกตจากสถานะการเคลื่อนที่ใด ๆ ซึ่งกลศาสตร์ดั้งเดิมสามารถสมมุติได้ว่ากรอบอ้างอิงพิเศษที่อยู่ในธรรมชาติอยู่ในรูปแบบง่าย ๆ มีอยู่จริง โดยเรียกกรอบเหล่านี้ว่ากรอบอ้างอิงเฉื่อย จากนิยามเบื้องต้น กรอบอ้างอิงเฉื่อยเป็นการมองจากสิ่ง ๆ หนึ่งที่ไม่มีแรงมากระทำมา กล่าวคือกรอบอ้างอิงเฉื่อยจะไม่เคลื่อนที่หรือเคลื่อนที่ด้วยคงที่ด้วยเส้นตรง กรอบเหล่านี้จะถูกกำหนดไว้โดยแหล่งที่สามารถยืนยันได้ที่เป็นแรงมากระทำต่อผู้สังเกต ซึ่งคือ สนาม เช่น สนามไฟฟ้า (เกิดจากประจุไฟฟ้าสถิต) สนามแม่เหล็ก (เกิดจากประจุที่เคลื่อนที่) สนามแรงโน้มถ่วง (เกิดจากมวล) และอื่น ๆ กรอบอ้างอิงไม่เฉื่อยเป็นการมองจากสิ่ง ๆ หนึ่งที่มีความเร่งโดยอ้างอิงจากกรอบอ้างอิงเฉื่อย และในกรอบอ้างอิงไม่เฉื่อย อนุภาคจะปรากฏว่ามีแรงอื่น ๆ มากระทำที่ไม่สามารถอธิบายได้โดยสนามที่มีอยู่ โดยเรียกได้หลายอย่างทั้ง แรงในนิยาย แรงเฉื่อย หรือแรงเทียม ซึ่งสมการของการเคลื่อนที่จะมีแรงเหล่านี้เพิ่มในสมการเพื่อให้ตรงต่อผลลัพธ์จากการสังเกตในกรอบที่มีความเร่ง ในทางปฏิบัติ กรอบอ้างอิงเฉื่อยขึ้นอยู่กับดาวที่อยู่ไกล (จุดที่อยู่ไกลมาก ๆ) ซึ่งไม่มีความเร่งถือเป็นการประมาณการที่ดีสำหรับกรอบอ้างอิงเฉื่อย

พิจารณากรอบอ้างอิงเฉื่อย 2 กรอบ คือ S และ S' ผู้สังเกตแต่ละคนจะตีกรอบเหตุการณ์ให้อยู่ในพิกัดปริภูมิ-เวลาของ (x,y,z,t) สำหรับกรอบ S และ (x',y',z',t') ในกรอบ S' โดยให้เวลาที่สังเกตนั้นเท่ากันในทุกกรอบอ้างอิง และถ้าเราให้ x = x' เมื่อ t = 0 จากนั้นความสัมพพันธ์ระหว่างพิกัดปริภูมิ-เวลาของเหตุการณ์เดียวกันที่มองจาก S และ S' ซึ่งเคลื่อนที่อยู่ด้วยความเร็วสัมพัทธ์ที่ U ในทิศทาง x คือ

x' = x − u·t

y' = y

z' = z

t' = t

โดยชุดสูตรเหล่านี้ถูกนิยามไว้ว่าเป็นการแปลงแบบกลุ่มหรือรู้จักในชื่อว่า การแปลงแบบกาลิเลโอ กลุ่มนี้มีข้อจำกัดในส่วนของกลุ่มปวงกาเร (Poincaré group) ที่ใช้ในทฤษฎีสัมพัทธภาพพิเศษ ซึ่งข้อจำกัดที่ว่าจะมีผลเมื่อความเร็ว u มีค่าน้อยมากเมื่อเทียบกับ c หรือความเร็วแสง

การแปลงจะมีผลที่ตามมาดังนี้

v'=v-u(ความเร็ว v' ของอนุภาคจากมุมมองของS ช้ากว่า v จากมุมมองของ S ที่เท่ากับ u)

a= a (ความเร่งคงที่เสมอในกรอบอ้างอิงเฉื่อยใด ๆ)

F′ = F (แรงที่กระทำเท่าเดิมในกรอบอ้างอิงเฉื่อยใด ๆ)

ความเร็วแสงไม่ใช่ค่าคงที่ในกลศาสตร์ดั้งเดิม หรือไม่ใช่เป็นตำแหน่งพิเศษที่ถูกให้โดยความเร็วแสงในกลศาสตร์สัมพัทธภาพซึ่งตรงข้ามกับกลศาสตร์ดั้งเดิม

สำหรับบางปัญหา มันอาจจะต้องใช้พิกัดที่หมุนอยู่เป็นกรอบอ้างอิงเพื่อความสะดวกในการวิเคราะห์ปัญหา หรืออาจจะใช้กรอบอ้างอิงที่เหมาะสม หรืออาจเพิ่มแรงหนีสู่ศูนย์กลาง และ แรงโคริออลิส ซึ่งเป็นแรงเทียม

แรงในกฎข้อที่สองของนิวตัน

นิวตันเป็นคนแรกที่อธิบายความสัมพันธ์ทางคณิตศาสตร์ระหว่างแรงและโมเมนตัม นักฟิสิกส์บางคนตีความกฎการเคลื่อนที่ข้อสองของนิวตันว่าเป็นนิยามของรงและมวล ในขณะที่คนอื่นพิจารณาให้มันเป็นสัจพจน์พื้นฐาน หากจะตีความอีกรูปแบบหนึ่งในผลที่ตามมาทางคณิตศาสตร์ที่เหมือนกัน หรือในทางประวัติศาสตร์เรียกว่า "กฎข้อที่สองของนิวตัน" ซึ่งก็คือ

ปริมาณ mv ถูกเรียกว่า โมเมนตัม (คาโนนิคัล) แรงลัพธ์ของอนุภาคจะเท่ากับอัตราการเปลี่ยนแปลงของโมเมนตัมของอนุภาคเมื่อเทียบกับเวลา เมื่อนิยามของความเร่งคือ a = dv/dt กฎสามารถเขียนในรูปที่ง่ายและคุ้นเคยกว่า คือ

ถ้ารู้ว่าแรงที่กระทำต่ออนุภาคมีค่าคงที่ กฎของนิวตันข้อที่สองเพียงพอที่จะอธิบายการเคลื่อนที่ของอนุภาค แต่ถ้าแรงใดแรงหนึ่งขึ้นกับความสัมพันธ์แบบอิสระ สามารถแทนความสัมพันธ์นั้นได้ในกฎของนิวตันข้อสอง จึงได้สมการเชิงอนุพันธ์สามัญ (Ordinary differential function) ซึ่งสามารถเรียกว่า สมการการเคลื่อนที่

ยกตัวอย่างในกรณีหนึ่ง สมมุติว่าแรงเสียดทานกระทำเพียงบนอนุภาคเท่านั้นและสามารถจำลองโดยใช้ฟังก์ชันของความเร็วของอนุภาค เช่น

โดยให้ λ เป็นค่าคงที่บวก และสถานะของเครื่องหมายลบคือความเร็วตรงกันข้ามกับเวกเตอร์อ้างอิง ดังนั้นจะได้สมการการเคลื่อนที่ว่า

ซึ่งสามารถแก้สมการได้โดยวิธีปริพันธ์แทนที่สมการเดิม

โดยให้ v0 เป็นความเร็วในขณะเริ่มต้น หมายความว่าความเร็วของอนุภาคมีการลดลงเชิงเอ็กซ์โพเนนเชียล ความเร็วมีค่าเข้าใกล้ 0 เมื่อเวลาผ่านไปนานขึ้น ในกรณีนี้ สามารถเทียบเท่าได้กับพลังงานจลน์ที่ถูกซับไปจากการเสียดทาน (กลายเป็นพลังงานความร้อนที่เกี่ยวเนื่องกับการอนุรักษ์พลังงาน) และอนุภาคเคลื่อนที่ช้าลง

งานและพลังงาน

นอกจากกฎของนิวตัน

ข้อจำกัดของกลศาสตร์ดั้งเดิม

กลศาสตร์ดั้งเดิมเมื่อเปรียบเทียบกับกลศาสตร์อื่นในขอบเขตศึกษาของความเร็วและขนาดของวัตถุ

การคาดประมาณในกลศาสตร์นิวตันกับทฤษฎีสัมพัทธภาพพิเศษ

การคาดประมาณในกลศาสตร์ดั้งเดิมกับกลศาสตร์ควอนตัม

ประวัติ

สาขาวิชา

ดูเพิ่มเติม