ผลต่างระหว่างรุ่นของ "อนุกรมฟูรีเย"

จากวิกิพีเดีย สารานุกรมเสรี
เนื้อหาที่ลบ เนื้อหาที่เพิ่ม
Octahedron80 (คุย | ส่วนร่วม)
ไม่มีความย่อการแก้ไข
Octahedron80 (คุย | ส่วนร่วม)
บรรทัด 50: บรรทัด 50:
::<math>=\sum_{n=1}^{\infty}(-1)^{n+1}\frac{2}{n} \sin(nx), \quad \forall x\in (-\pi,\pi)</math>
::<math>=\sum_{n=1}^{\infty}(-1)^{n+1}\frac{2}{n} \sin(nx), \quad \forall x\in (-\pi,\pi)</math>


สำหรับการประยุกต์ใช้งานอนุกรมฟูรีเย ดู ค่าของ[[ฟังก์ชันรีมันน์เซตา]] ที่ ''s'' = 2
สำหรับการประยุกต์ใช้งานอนุกรมฟูรีเย ดู ค่าของ[[ฟังก์ชันซีตาของรีมันน์]] ที่ ''s'' = 2


[[ไฟล์:Periodic identity function.gif|left|thumb|400px|ภาพเคลื่อนไหวแสดงกราฟต่อเนื่องห้าอันดับจากอนุกรมฟูรีเยที่เป็นคำตอบ]]
[[ไฟล์:Periodic identity function.gif|left|thumb|400px|ภาพเคลื่อนไหวแสดงกราฟต่อเนื่องห้าอันดับจากอนุกรมฟูรีเยที่เป็นคำตอบ]]

รุ่นแก้ไขเมื่อ 17:13, 20 กันยายน 2554

อนุกรมฟูรีเย ตั้งชื่อตาม โฌแซ็ฟ ฟูรีเย อนุกรมฟูรีเยเป็นเทคนิคทางคณิตศาสตร์ที่มีประโยชน์ เช่นใช้ในการแยกปัญหาออกเป็นส่วนย่อยๆ ที่ง่ายกว่าปัญหาดั้งเดิม โดยอนุกรมฟูรีเย นั้นเป็นการกระจายฟังก์ชันคาบ ที่มีคาบ 2π ให้อยู่ในรูปผลบวกของ ฟังก์ชันคาบในรูป

ซึ่งเป็น ฮาร์โมนิก ของ ei x หรือ อาจเขียนในรูปของฟังก์ชัน ไซน์ และ โคไซน์

ดูประวัติที่บทความหลัก การแปลงฟูรีเย

นิยาม

พิจารณาฟังก์ชันจำนวนเชิงซ้อน f(x) ของตัวแปรซึ่งมีค่าเป็นจำนวนจริง ที่มีคาบ 2π และ สามารถหาค่าปริพันธ์ของกำลังสอง ในช่วง 0 ถึง 2π ได้ การกระจายฟังก์ชันในรูปของอนุกรมฟูรีเยจะหาได้จาก

อนุกรมฟูรีเย สัมประสิทธิ์ของอนุกรมฟูรีเย
จาก สูตรของออยเลอร์ (Euler's formula) เราสามารถเขียน f(x) อยู่ในรูปอนุกรมอนันต์ของ และ

โดยที่ , และ

ตัวอย่าง

พิจารณาฟังก์ชัน สำหรับค่า และเป็นคาบในช่วงที่เหลือ ตามข้อสมมุติของอนุกรมฟูรีเย ดังรูป

สัมประสิทธิ์ของอนุกรมฟูรีเยสามารถคำนวณหาได้ดังต่อไปนี้ สังเกตว่า cos(nx) เป็นฟังก์ชันคู่ ในขณะที่ f เป็นฟังก์ชันคี่เช่นเดียวกับ sin(nx)

สังเกตว่า a0 และ an มีค่าเท่ากับ 0 เนื่องจาก x และ x cos(nx) เป็นฟังก์ชันคี่ ดังนั้นอนุกรมฟูรีเยของ f(x) = x คือ:

สำหรับการประยุกต์ใช้งานอนุกรมฟูรีเย ดู ค่าของฟังก์ชันซีตาของรีมันน์ ที่ s = 2

ภาพเคลื่อนไหวแสดงกราฟต่อเนื่องห้าอันดับจากอนุกรมฟูรีเยที่เป็นคำตอบ