ผลต่างระหว่างรุ่นของ "กณิกนันต์"

จากวิกิพีเดีย สารานุกรมเสรี
เนื้อหาที่ลบ เนื้อหาที่เพิ่ม
Rattakorn c (คุย | ส่วนร่วม)
ไม่มีความย่อการแก้ไข
BotKung (คุย | ส่วนร่วม)
เก็บกวาดบทความด้วยบอต
บรรทัด 6: บรรทัด 6:
ก่อนหน้านี้เคยมีการตั้งข้อสังเกตและอภิปรายเกี่ยวกับจำนวนที่เล็กมากๆ โดย[[สำนักศึกษาเอเลียทิคส์]] แต่[[อาร์คิมิดีส]]เป็นคนแรกที่เสนอคำนิยามที่มีตรรกะอย่างจริงจังในงานเขียนเรื่อง ''[[ระเบียบวิธีเกี่ยวกับทฤษฎีบทกลศาสตร์]]''<ref>Archimedes, ''The Method of Mechanical Theorems''; see [[Archimedes Palimpsest]]</ref> จาก[[คุณสมบัติแบบอาร์คิมิดีส]] นิยามไว้ว่า จำนวน ''x'' จะเป็นจำนวนอนันต์ถ้าสอดคล้องตามเงื่อนไข |x|>1, |x|>1+1, |x|>1+1+1, ... และจะเป็นจำนวนกณิกนันต์ถ้า x≠0 เงื่อนไขคล้ายคลึงกันนี้ใช้ได้กับ 1/x และจำนวนเต็มที่เป็นส่วนกลับด้วย ระบบจำนวนเช่นนี้กล่าวว่ามีคุณสมบัติแบบอาร์คิมิดีสถ้ามันไม่มีสมาชิกที่เป็นจำนวนอนันต์หรือจำนวนกณิกนันต์เลย ในระบบคณิตศาสตร์ของกรีกโบราณ 1 เป็นตัวแทนของความยาวช่วงหนึ่ง ใช้เป็นหน่วยนับอย่างไม่เป็นทางการนัก
ก่อนหน้านี้เคยมีการตั้งข้อสังเกตและอภิปรายเกี่ยวกับจำนวนที่เล็กมากๆ โดย[[สำนักศึกษาเอเลียทิคส์]] แต่[[อาร์คิมิดีส]]เป็นคนแรกที่เสนอคำนิยามที่มีตรรกะอย่างจริงจังในงานเขียนเรื่อง ''[[ระเบียบวิธีเกี่ยวกับทฤษฎีบทกลศาสตร์]]''<ref>Archimedes, ''The Method of Mechanical Theorems''; see [[Archimedes Palimpsest]]</ref> จาก[[คุณสมบัติแบบอาร์คิมิดีส]] นิยามไว้ว่า จำนวน ''x'' จะเป็นจำนวนอนันต์ถ้าสอดคล้องตามเงื่อนไข |x|>1, |x|>1+1, |x|>1+1+1, ... และจะเป็นจำนวนกณิกนันต์ถ้า x≠0 เงื่อนไขคล้ายคลึงกันนี้ใช้ได้กับ 1/x และจำนวนเต็มที่เป็นส่วนกลับด้วย ระบบจำนวนเช่นนี้กล่าวว่ามีคุณสมบัติแบบอาร์คิมิดีสถ้ามันไม่มีสมาชิกที่เป็นจำนวนอนันต์หรือจำนวนกณิกนันต์เลย ในระบบคณิตศาสตร์ของกรีกโบราณ 1 เป็นตัวแทนของความยาวช่วงหนึ่ง ใช้เป็นหน่วยนับอย่างไม่เป็นทางการนัก


นักคณิตศาสตร์ชาวอินเดีย [[Bhāskara II]] (1114–1185)<ref>{{cite journal | last = '''Shukla''' | first = Kripa Shankar | authorlink = | coauthors = | title = Use of Calculus in Hindu Mathematics | journal = Indian Journal of History of Science | volume = 19 | issue = | pages = 95–104 |date=1984 | url = | doi = | id = | accessdate = | postscript = . }}</ref>{{Verify source}} และชาวเปอร์เซีย [[Sharaf al-Dīn al-Tūsī]] (1135&ndash;1213)<ref>{{Cite book | last1=Rashed | first1=Roshdi | last2=Armstrong | first2=Angela | year=1994 | title=The Development of Arabic Mathematics | publisher=[[Springer Science+Business Media|Springer]] | isbn=0792325656 | pages=342–3 | postscript=.}}</ref><ref name=Berggren>J. L. Berggren (1990). "Innovation and Tradition in Sharaf al-Din al-Tusi's Muadalat", ''Journal of the American Oriental Society'' '''110''' (2), p. 304&ndash;309.</ref>{{Verify source}} ได้นำค่ากณิกนันต์มาใช้ประโยชน์ เมื่อต่างก็ค้นพบหลักการสำคัญของ[[อนุพันธ์]] (derivative) นอกจากนี้ โรงเรียนดาราศาสตร์และคณิตศาสตร์ Kerala ซึ่งตั้งอยู่ระหว่างคริสต์ศตวรรษที่ 14-16 ได้นำเอาคุณสมบัติสำคัญของ[[ลิมิต]]มาใช้เพื่อคำนวณการขยายตัวของ[[อนุกรม]]หลายชนิด<ref name=roy>Roy, Ranjan. 1990. "Discovery of the Series Formula for <math> \pi </math> by Leibniz, Gregory, and Nilakantha." ''Mathematics Magazine'' (Mathematical Association of America) 63(5):291&ndash;306.</ref>
นักคณิตศาสตร์ชาวอินเดีย [[Bhāskara II]] (1114–1185)<ref>{{cite journal | last = '''Shukla''' | first = Kripa Shankar | authorlink = | coauthors = | title = Use of Calculus in Hindu Mathematics | journal = Indian Journal of History of Science | volume = 19 | issue = | pages = 95–104 |date=1984 | url = | doi = | id = | accessdate = | postscript = . }}</ref>{{Verify source}} และชาวเปอร์เซีย [[Sharaf al-Dīn al-Tūsī]] (1135-1213)<ref>{{Cite book | last1=Rashed | first1=Roshdi | last2=Armstrong | first2=Angela | year=1994 | title=The Development of Arabic Mathematics | publisher=[[Springer Science+Business Media|Springer]] | isbn=0792325656 | pages=342–3 | postscript=.}}</ref><ref name=Berggren>J. L. Berggren (1990). "Innovation and Tradition in Sharaf al-Din al-Tusi's Muadalat", ''Journal of the American Oriental Society'' '''110''' (2), p. 304-309.</ref>{{Verify source}} ได้นำค่ากณิกนันต์มาใช้ประโยชน์ เมื่อต่างก็ค้นพบหลักการสำคัญของ[[อนุพันธ์]] (derivative) นอกจากนี้ โรงเรียนดาราศาสตร์และคณิตศาสตร์ Kerala ซึ่งตั้งอยู่ระหว่างคริสต์ศตวรรษที่ 14-16 ได้นำเอาคุณสมบัติสำคัญของ[[ลิมิต]]มาใช้เพื่อคำนวณการขยายตัวของ[[อนุกรม]]หลายชนิด<ref name=roy>Roy, Ranjan. 1990. "Discovery of the Series Formula for <math> \pi </math> by Leibniz, Gregory, and Nilakantha." ''Mathematics Magazine'' (Mathematical Association of America) 63(5):291-306.</ref>


== อ้างอิง ==
== อ้างอิง ==
บรรทัด 12: บรรทัด 12:
{{เริ่มอ้างอิง}}
{{เริ่มอ้างอิง}}
* B. Crowell, [http://www.lightandmatter.com/calc/ "Calculus"] (2003)
* B. Crowell, [http://www.lightandmatter.com/calc/ "Calculus"] (2003)
*Ehrlich, P. (2006) The rise of non-Archimedean mathematics and the roots of a misconception. I. The emergence of non-Archimedean systems of magnitudes. Arch. Hist. Exact Sci. 60, no. 1, 1&ndash;121.
*Ehrlich, P. (2006) The rise of non-Archimedean mathematics and the roots of a misconception. I. The emergence of non-Archimedean systems of magnitudes. Arch. Hist. Exact Sci. 60, no. 1, 1-121.
* J. Keisler, [http://www.math.wisc.edu/~keisler/calc.html "Elementary Calculus"] (2000) University of Wisconsin
* J. Keisler, [http://www.math.wisc.edu/~keisler/calc.html "Elementary Calculus"] (2000) University of Wisconsin
* K. Stroyan [http://www.math.uiowa.edu/%7Estroyan/InfsmlCalculus/InfsmlCalc.htm "Foundations of Infinitesimal Calculus"] (1993)
* K. Stroyan [http://www.math.uiowa.edu/%7Estroyan/InfsmlCalculus/InfsmlCalc.htm "Foundations of Infinitesimal Calculus"] (1993)
บรรทัด 19: บรรทัด 19:
* [http://www.aslonline.org/books-lnl_25.html "Nonstandard Methods and Applications in Mathematics"] (2007) Lecture Notes in Logic 25, Association for Symbolic Logic.
* [http://www.aslonline.org/books-lnl_25.html "Nonstandard Methods and Applications in Mathematics"] (2007) Lecture Notes in Logic 25, Association for Symbolic Logic.
* [http://www.springer.com/west/home/springerwiennewyork/mathematics?SGWID=4-40638-22-173705722-0 "The Strength of Nonstandard Analysis"] (2007) Springer.
* [http://www.springer.com/west/home/springerwiennewyork/mathematics?SGWID=4-40638-22-173705722-0 "The Strength of Nonstandard Analysis"] (2007) Springer.
*{{Cite journal|doi=10.1007/BF00329867|authorlink=Detlef Laugwitz|last=Laugwitz|first=D.|year=1989|title=Definite values of infinite sums: aspects of the foundations of infinitesimal analysis around 1820|journal=Arch. Hist. Exact Sci.|volume=39|issue=3|pages=195&ndash;245|postscript=<!--None-->}}.
*{{Cite journal|doi=10.1007/BF00329867|authorlink=Detlef Laugwitz|last=Laugwitz|first=D.|year=1989|title=Definite values of infinite sums: aspects of the foundations of infinitesimal analysis around 1820|journal=Arch. Hist. Exact Sci.|volume=39|issue=3|pages=195-245|postscript=<!--None-->}}.
* Yamashita, H.: Comment on: "Pointwise analysis of scalar Fields: a nonstandard approach" [J. Math. Phys. 47 (2006), no. 9, 092301; 16 pp.]. J. Math. Phys. 48 (2007), no. 8, 084101, 1 page.
* Yamashita, H.: Comment on: "Pointwise analysis of scalar Fields: a nonstandard approach" [J. Math. Phys. 47 (2006), no. 9, 092301; 16 pp.]. J. Math. Phys. 48 (2007), no. 8, 084101, 1 page.
{{จบอ้างอิง}}
{{จบอ้างอิง}}

รุ่นแก้ไขเมื่อ 02:57, 18 เมษายน 2554

กณิกนันต์ (อังกฤษ: Infinitesimals) คือคำศัพท์ใช้อธิบายแนวคิดของวัตถุที่มีขนาดเล็กมากๆ จนไม่สามารถมองเห็นหรือตรวจวัดได้ ถ้ากล่าวโดยทั่วไป วัตถุกณิกนันต์คือวัตถุที่มีขนาดเล็กจนไม่สามารถหาวิธีตรวจวัดได้ แต่ก็ไม่ได้เป็นศูนย์ มันเล็กมากจนยากจะแยกจากศูนย์ได้ด้วยวิธีการใดๆ ที่มีอยู่

ผู้ก่อตั้งแคลคูลัสกณิกนันต์ ได้แก่ แฟร์มาต์, ไลบ์นิซ, นิวตัน, ออยเลอร์, คอชี และคนอื่นๆ ได้ทำการคำนวณด้วยแนวคิดกณิกนันต์และสามารถหาผลลัพธ์ที่ถูกต้องได้สำเร็จ

ประวัติของกณิกนันต์

ก่อนหน้านี้เคยมีการตั้งข้อสังเกตและอภิปรายเกี่ยวกับจำนวนที่เล็กมากๆ โดยสำนักศึกษาเอเลียทิคส์ แต่อาร์คิมิดีสเป็นคนแรกที่เสนอคำนิยามที่มีตรรกะอย่างจริงจังในงานเขียนเรื่อง ระเบียบวิธีเกี่ยวกับทฤษฎีบทกลศาสตร์[1] จากคุณสมบัติแบบอาร์คิมิดีส นิยามไว้ว่า จำนวน x จะเป็นจำนวนอนันต์ถ้าสอดคล้องตามเงื่อนไข |x|>1, |x|>1+1, |x|>1+1+1, ... และจะเป็นจำนวนกณิกนันต์ถ้า x≠0 เงื่อนไขคล้ายคลึงกันนี้ใช้ได้กับ 1/x และจำนวนเต็มที่เป็นส่วนกลับด้วย ระบบจำนวนเช่นนี้กล่าวว่ามีคุณสมบัติแบบอาร์คิมิดีสถ้ามันไม่มีสมาชิกที่เป็นจำนวนอนันต์หรือจำนวนกณิกนันต์เลย ในระบบคณิตศาสตร์ของกรีกโบราณ 1 เป็นตัวแทนของความยาวช่วงหนึ่ง ใช้เป็นหน่วยนับอย่างไม่เป็นทางการนัก

นักคณิตศาสตร์ชาวอินเดีย Bhāskara II (1114–1185)[2][ต้องการตรวจสอบความถูกต้อง] และชาวเปอร์เซีย Sharaf al-Dīn al-Tūsī (1135-1213)[3][4][ต้องการตรวจสอบความถูกต้อง] ได้นำค่ากณิกนันต์มาใช้ประโยชน์ เมื่อต่างก็ค้นพบหลักการสำคัญของอนุพันธ์ (derivative) นอกจากนี้ โรงเรียนดาราศาสตร์และคณิตศาสตร์ Kerala ซึ่งตั้งอยู่ระหว่างคริสต์ศตวรรษที่ 14-16 ได้นำเอาคุณสมบัติสำคัญของลิมิตมาใช้เพื่อคำนวณการขยายตัวของอนุกรมหลายชนิด[5]

อ้างอิง

  1. Archimedes, The Method of Mechanical Theorems; see Archimedes Palimpsest
  2. Shukla, Kripa Shankar (1984). "Use of Calculus in Hindu Mathematics". Indian Journal of History of Science. 19: 95–104. {{cite journal}}: Cite ไม่รู้จักพารามิเตอร์ว่างเปล่า : |coauthors= (help)CS1 maint: postscript (ลิงก์)
  3. Rashed, Roshdi; Armstrong, Angela (1994). The Development of Arabic Mathematics. Springer. pp. 342–3. ISBN 0792325656.{{cite book}}: CS1 maint: postscript (ลิงก์)
  4. J. L. Berggren (1990). "Innovation and Tradition in Sharaf al-Din al-Tusi's Muadalat", Journal of the American Oriental Society 110 (2), p. 304-309.
  5. Roy, Ranjan. 1990. "Discovery of the Series Formula for by Leibniz, Gregory, and Nilakantha." Mathematics Magazine (Mathematical Association of America) 63(5):291-306.