ผลต่างระหว่างรุ่นของ "ลำดับเรขาคณิต"

จากวิกิพีเดีย สารานุกรมเสรี
เนื้อหาที่ลบ เนื้อหาที่เพิ่ม
D'ohBot (คุย | ส่วนร่วม)
โรบอต เพิ่ม: sr:Геометријска прогресија
SieBot (คุย | ส่วนร่วม)
โรบอต เพิ่ม: ms:Janjang geometri
บรรทัด 114: บรรทัด 114:
[[lt:Geometrinė progresija]]
[[lt:Geometrinė progresija]]
[[mk:Геометриска прогресија]]
[[mk:Геометриска прогресија]]
[[ms:Janjang geometri]]
[[nl:Meetkundige rij]]
[[nl:Meetkundige rij]]
[[pl:Szereg geometryczny]]
[[pl:Szereg geometryczny]]

รุ่นแก้ไขเมื่อ 19:44, 30 สิงหาคม 2553

ในทางคณิตศาสตร์ การก้าวหน้าเรขาคณิต (อังกฤษ: geometric progression) หรือ ลำดับเรขาคณิต (อังกฤษ: geometric sequence) คือลำดับของจำนวนซึ่งอัตราส่วนของสมาชิกสองตัวที่อยู่ติดกันในลำดับเป็นค่าคงตัวที่ไม่เป็นศูนย์ ซึ่งอัตราส่วนนั้นเรียกว่า อัตราส่วนทั่วไป (common ratio) ตัวอย่างเช่น ลำดับ 2, 6, 18, 54, ... เป็นการก้าวหน้าเรขาคณิตซึ่งมีอัตราส่วนทั่วไปเท่ากับ 3 และลำดับ 10, 5, 2.5, 1.25, ... มีอัตราส่วนเท่ากับ 0.5 เป็นต้น

ถ้าหากพจน์เริ่มต้นของการก้าวหน้าเรขาคณิตลำดับหนึ่งคือ a1 และมีอัตราส่วนทั่วไป r ≠ 0 ดังนั้นพจน์ที่ n ของลำดับนี้คือ

หรือในกรณีทั่วไป จะได้

หรือเขียนได้ด้วยรูปแบบความสัมพันธ์เวียนเกิด

สมบัติเบื้องต้น

การที่จะทำให้ทราบได้ว่าลำดับที่กำหนดให้เป็นการก้าวหน้าเรขาคณิตหรือไม่ สามารถตรวจสอบได้จากอัตราส่วนของพจน์ที่อยู่ติดกัน ซึ่งจะมีค่าเท่ากันทั้งลำดับ อัตราส่วนทั่วไปอาจเป็นค่าติดลบก็ได้ ซึ่งจะทำให้เกิดลำดับสลับเครื่องหมาย หมายความว่าจำนวนจะสลับเครื่องหมายบวกลบตลอดทั้งลำดับ เช่น 1, −3, 9, −27, 81, −243, ... เป็นการก้าวหน้าเรขาคณิตซึ่งมีอัตราส่วนทั่วไปเท่ากับ −3

พฤติกรรมของจำนวนในการก้าวหน้าเรขาคณิตขึ้นอยู่กับค่าของอัตราส่วนทั่วไป

  • ถ้าเป็นจำนวนบวก ทุกพจน์จะมีเครื่องหมายเหมือนกับพจน์แรก
  • ถ้าเป็นจำนวนลบ ทุกพจน์จะมีเครื่องหมายบวกลบสลับกัน
  • ถ้ามากกว่า 1 ลำดับนั้นจะเพิ่มแบบชี้กำลัง (exponential growth) ไปยังอนันต์
  • ถ้าเท่ากับ 1 ลำดับนั้นจะคงที่ทุกพจน์
  • ถ้ามีค่าอยู่ระหว่าง −1 ถึง 1 แต่ไม่เป็น 0 ลำดับนั้นจะลดแบบชี้กำลัง (exponential decay) ไปยังศูนย์
  • ถ้าเท่ากับ −1 ลำดับนั้นจะมีเครื่องหมายบวกลบสลับกัน แต่ค่าตัวเลขไม่เปลี่ยนแปลง
  • ถ้าน้อยกว่า −1 ค่าสัมบูรณ์ของพจน์ต่างๆ จะเพิ่มแบบชี้กำลังไปยังอนันต์

จะเห็นว่าการก้าวหน้าเรขาคณิต (ที่มีอัตราส่วนไม่ใช่ −1, 1 หรือ 0) แสดงให้เห็นถึงการเพิ่มหรือการลดแบบชี้กำลัง ต่างกับการเพิ่ม (หรือลด) แบบเชิงเส้นของการก้าวหน้าเลขคณิต แต่การก้าวหน้าทั้งสองชนิดก็มีความเกี่ยวข้องกัน นั่นคือ ถ้าหากใส่ฟังก์ชันเลขชี้กำลังลงในทุกพจน์ของการก้าวหน้าเลขคณิตก็จะได้การก้าวหน้าเรขาคณิต และหากใส่ฟังก์ชันลอการิทึมลงในทุกพจน์ของการก้าวหน้าเรขาคณิตก็จะได้การก้าวหน้าเลขคณิต

ผลรวม

ผลรวมของสมาชิกในการก้าวหน้าเรขาคณิต เรียกว่า อนุกรมเรขาคณิต (อังกฤษ: geometric series)

เราสามารถทำสูตรให้ง่ายขึ้นโดยการคูณทั้งสองข้างของสมการด้วย แล้วเราจะได้

ซึ่งพจน์อื่นๆ จะตัดกันหายไปหมด จัดรูปแบบใหม่ จะได้สูตรสำหรับคำนวณผลรวม โดยที่ r ≠ 1

ดังนั้นกรณีทั่วไปของสูตรนี้คือ

สำหรับอนุกรมเรขาคณิตที่มีแต่เลขชี้กำลังของ r เป็นจำนวนคู่ คูณทั้งสองข้างด้วย

จะได้สูตร

ส่วนเลขชี้กำลังของ r ที่มีแต่จำนวนคี่

จะได้สูตร

อนุกรมเรขาคณิตไม่จำกัด

อนุกรมเรขาคณิตไม่จำกัด คืออนุกรมเรขาคณิตที่มีจำนวนพจน์ไม่จำกัดหรือเป็นจำนวนอนันต์ อนุกรมนี้จะลู่เข้าค่าใดค่าหนึ่งก็ต่อเมื่อ ค่าสัมบูรณ์ของอัตราส่วนทั่วไปมีค่าน้อยกว่าหนึ่ง () ค่าของอนุกรมเรขาคณิตไม่จำกัดสามารถคำนวณได้จากสูตรของผลรวมจำกัด

ซึ่ง จะมีค่าเข้าใกล้ 0 เมื่อ k มีค่าเข้าใกล้อนันต์และ ดังนั้น

สำหรับอนุกรมเรขาคณิตที่มีแต่เลขชี้กำลังของ r เป็นจำนวนคู่ จะได้สูตร

ส่วนเลขชี้กำลังของ r ที่มีแต่จำนวนคี่ จะได้สูตร

โดยที่สูตรทั้งหมดด้านบนจะใช้ได้เมื่อ เท่านั้น นอกเหนือจากนี้จะเป็นอนุกรมลู่ออก

ผลคูณ

ผลคูณของการก้าวหน้าเรขาคณิตก็คือผลคูณของทุกพจน์ในลำดับ และถ้าหากพจน์ทั้งหมดเป็นจำนวนบวก เราจะสามารถคำนวณผลคูณได้ด้วยการหาค่ามัชฌิมเรขาคณิตของพจน์แรกกับพจน์สุดท้าย แล้วยกกำลังด้วยจำนวนพจน์ทั้งหมด ดังนี้

เมื่อ
พิสูจน์

กำหนดให้ผลคูณของการก้าวหน้าเลขคณิตแทนด้วย P

รวมผลจากการคูณเข้าด้วยกัน จะได้

นำสูตรผลรวมของอนุกรมเลขคณิตมาใช้กับเลขชี้กำลังของ r

ยกกำลังสองทั้งสองข้าง

และในที่สุดก็จะได้

ดูเพิ่ม

แหล่งข้อมูลอื่น