พลังงานนิวเคลียร์

จากวิกิพีเดีย สารานุกรมเสรี

พลังงานนิวเคลียร์ เป็นพลังงานรูปแบบหนึ่ง ที่ได้จากปฏิกิริยานิวเคลียร์ นิวเคลียร์ เป็นคำคุณศัพท์ของคำว่า นิวเคลียส ซึ่งเป็นแก่นกลางของอะตอมธาตุ ซึ่งประกอบด้วยอนุภาคโปรตอน และนิวตรอน ซึ่งยึดกันได้ด้วยแรงของอนุภาคไพออน

พลังงานนิวเคลียร์ หมายถึง พลังงานไม่ว่าลักษณะใดๆก็ตาม ซึ่งเกิดจากนิวเคลียสอะตอมโดย

  1. พลังงานนิวเคลียร์แบบฟิซชั่น (Fission) ซึ่งเกิดจากการแตกตัวของนิวเคลียสธาตุหนัก เช่น ยูเรเนียม พลูโทเนียม เมื่อถูกชนด้วยนิวตรอนหรือโฟตอน
  2. พลังงานนิวเคลียร์แบบฟิวชั่น (Fusion) เกิดจากการรวมตัวของนิวเคลียสธาตุเบา เช่น ไฮโดรเจน
  3. พลังงานนิวเคลียร์ที่เกิดจากการสลายตัวของสารกัมมันตรังสี (Radioactivity) ซึ่งให้รังสีต่างๆ ออกมา เช่น อัลฟา เบตา แกมมา และนิวตรอน เป็นต้น
  4. พลังงานนิวเคลียร์ที่เกิดจากการเร่งอนุภาคที่มีประจุ (Particle Accelerator) เช่น อิเล็กตรอน โปรตอน ดิวทีรอน และอัลฟา เป็นต้น

พลังงานนิวเคลียร์ บางครั้งใช้แทนกันกับคำว่า พลังงานปรมาณู นอกจากนี้พลังงานนิวเคลียร์ยังครอบคลุมไปถึงพลังงานรังสีเอกซ์ด้วย (พ.ร.บ. พลังงานเพื่อสันติ ฉบับที่ 2 พ.ศ. 2508) พลังงานนิวเคลียร์ สามารถปลดปล่อยออกมาเป็นพลังงานหลายรูปแบบ เช่น พลังงานความร้อน รังสีแกมมา อนุภาคเบต้า อนุภาคอัลฟา อนุภาคนิวตรอน เป็นต้น

ประวัติศาสตร์[แก้]

ภายหลัง สงครามโลกครั้งที่สอง ที่อุบัติขึ้นในปีพุทธศักราช 2482 และสิ้นสุดลงในปีพุทธศักราช 2488 นั้น ญี่ปุ่นได้รับความเสียหายอย่างมาก จากการที่สหรัฐอเมริกาได้ใช้อาวุธแบบใหม่โจมตีญี่ปุ่น โดยทิ้งระเบิดปรมาณูลูกแรกลงที่เมืองฮิโรชิมา ซึ่งเป็นฐานบัญชาการกองทัพบกของญี่ปุ่นทางตอนใต้ ประชาชนชาวญี่ปุ่นในเมืองดังกล่าวได้เสียชีวิตไป 80,000 คน และในจำนวนเท่าๆ กันได้รับบาดเจ็บ ตึกรามบ้านช่องกว่า 60% ได้ถูกทำลายลง ซึ่งรวมทั้งตึกที่ทำการของรัฐบาล ย่านธุรกิจ และย่านที่อยู่อาศัย และในอีกสามวันต่อมา ระเบิดปรมาณูลูกที่สองก็ถูกทิ้งลงที่เมืองนางาซากิ ซึ่งเป็นเมืองท่าชายทะเลมีโรงงานอุตสาหกรรมเป็นจำนวนมาก ชาวญี่ปุ่นได้เสียชีวิตระหว่าง 35,000 ถึง 40,000 คน และได้รับบาดเจ็บในจำนวนที่ไล่เลี่ยกัน จากความเสียหายอย่างมหันต์ในคราวนั้น ทำให้ญี่ปุ่นต้องยอมเซ็นสัญญาสันติภาพ ซึ่งระบุให้จักรพรรดิและรัฐบาลญี่ปุ่นอยู่ใต้การปกครองของผู้บัญชาการสูงสุดของทหารสัมพันธมิตร

ในปีพุทธศักราช 2496 ประธานาธิบดีแห่งสหรัฐอเมริกา ได้ประกาศริเริ่มดำเนินโครงการ "ปรมาณูเพื่อสันติ" ขึ้น และในอีกสองปีต่อมา สหประชาชาติได้จัดให้มีการประชุมขึ้นที่กรุงเจนีวา มีนักวิทยาศาสตร์กว่า 4,000 คน จาก 73 ชาติ ได้เข้าร่วมประชุมและพิจารณาถึงการนำพลังงานนิวเคลียร์มาใช้ในทางสันติ เพื่อแสดงให้ชาวโลกทราบว่า พลังงานนิวเคลียร์ที่ใครๆ เห็นว่าเป็นมหันตภัยร้ายแรงสำหรับมนุษย์นั้น อยู่ในวิสัยที่อาจจะควบคุม และนำมาใช้เป็นประโยชน์ได้เช่นกัน และโครงการนี้ได้กระตุ้นให้ประเทศต่าง ๆ ทั่วโลกก่อตั้งสถาบันวิจัยและพัฒนาด้านพลังงานนิวเคลียร์ขึ้นในประเทศของตน เพื่อนำพลังงานนิวเคลียร์มาใช้ประโยชน์ในทางสันติ และช่วยการพัฒนาประเทศในด้านต่าง ๆ

พลังงานนิวเคลียร์ (Nuclear energy) หมายถึง พลังงานไม่ว่าในลักษณะใดซึ่งเกิดจากการปลดปล่อยออกมาเมื่อมีการแยก, รวมหรือแปลงนิวเคลียส (หรือแกน) ของปรมาณู คำที่ใช้แทนกันได้คือ พลังงานปรมาณู (Atomic energy) ซึ่งเป็นคำที่เกิดขึ้นก่อนและใช้กันมาจนติดปาก โดยอาจเป็นเพราะมนุษย์เรียนรู้ถึงเรื่องของปรมาณู (Atom) มานานก่อนที่จะเจาะลึกลงไปถึงระดับนิวเคลียส แต่การใช้ศัพท์ที่ถูกต้องควรใช้คำว่า พลังงานนิวเคลียร์ อย่างไรก็ดีคำว่า Atomic energy ยังเป็นคำที่ใช้กันอยู่ในกฎหมายของหลายประเทศ สำหรับประเทศไทยได้กำหนดความหมายของคำว่าพลังงานปรมาณู ไว้ในมาตรา 3 แห่งพ.ร.บ.พลังงานปรมาณูเพื่อสันติ พ.ศ. 2504 ในความหมายที่ตรงกับคำว่า พลังงานนิวเคลียร์ และต่อมาได้บัญญัติไว้ในมาตรา3 ให้ครอบคลุมไปถึงพลังงานรังสีเอกซ์ด้วย การที่ยังรักษาคำว่าพลังงานปรมาณูไว้ในกฎหมาย โดยไม่เปลี่ยนไปใช้คำว่าพลังงานนิวเคลียร์แทน จึงน่าจะยังคงมีประโยชน์อยู่บ้าง เพราะในทางวิชาการถือว่า พลังงานเอกซ์ไม่ใช่พลังงานนิวเคลียร์ การกล่าวถึง พลังงานนิวเคลียร์ในเชิงปริมาณ ต้องใช้หน่วยที่เป็นหน่วยของพลังงาน โดยส่วนมากจะนิยมใช้หน่วย eV, KeV (เท่ากับ1,000 eV) และ MeV (เท่ากับ 1,000,000 eV) เมื่อกล่าวถึงพลังงานนิวเคลียร์ปริมาณน้อย และนิยมใช้หน่วยกิโลวัตต์- ชั่วโมง หรือ เมกะวัตต์-วัน เมื่อกล่าวถึงพลังงานปริมาณมากๆ โดย: 1MWd=เมกะวัตต์-วัน = 24,000 กิโลวัตต์-ชั่วโมง และ 1MeV=1.854x10E-24 MWd

พลังนิวเคลียร์ (Nuclear power) เป็นศัพท์คำหนึ่งที่มีความหมายสับสน เพราะโดยทั่วไปมักจะมีผู้นำไปใช้ปะปนกับคำว่า พลังงานนิวเคลียร์ โดยถือเอาว่าเป็นคำที่มีความหมายแทนกันได้ แต่ในทางวิศวกรรมนิวเคลียร์เราควรจะใช้คำว่าพลังนิวเคลียร์ เมื่อกล่าวถึงรูปแบบหรือวิธีการเปลี่ยนพลังงานจากรูปหนึ่งไปสู่อีกรูปหนึ่งเช่น โรงไฟฟ้าพลังนิวเคลียร์ย่อมหมายถึง โรงงานที่ใช้เปลี่ยนรูปพลังงานนิวเคลียร์มาเป็นพลังงานไฟฟ้า หรือเรือขับเคลื่อนด้วยพลังนิวเคลียร์ ย่อมหมายถึงเรือที่ขับเคลื่อนโดยการเปลี่ยนรูปพลังงานนิวเคลียร์มาเป็นพลังงานกล เป็นต้น พลังนิวเคลียร์เป็นคำที่มาจาก Nuclear power ในภาษาอังกฤษ แต่ในภาษาอังกฤษเอง เมื่อกล่าวถึงเรื่องที่เกี่ยวกับดุลอำนาจระหว่างประเทศ (Nuclear power) กลับหมายถึง มหาอำนาจนิวเคลียร์ หรือประเทศที่มีอาวุธนิวเคลียร์สะสมไว้เพียงพอที่จะใช้เป็นเครื่องมือทางการเมืองได้ (โดยเฉพาะเมื่อใช้เป็นพหูพจน์) การเน้นให้เห็นถึงความแตกต่างระหว่างคำ พลังนิวเคลียร์ และ พลังงานนิวเคลียร์ ก็เพราะในด้านวิศวกรรม พลังควรมีความหมาย เช่นเดียวกับกำลัง ดังนั้นเมื่อกล่าวถึงพลังในเชิงปริมาณ จะต้องใช้หน่วยที่เป็นหน่วยของกำลัง เช่น "โรงไฟฟ้าพลังนิวเคลียร์ ขนาด 600 เมกะวัตต์ (ไฟฟ้า) โรงนี้ใช้เครื่องปฏิกรณ์แบบน้ำเดือด (BWR) ขนาด 1,800 เมกะวัตต์ (ความร้อน) เป็นเครื่องกำเนิดไอน้ำแทนเตาน้ำมัน" เป็นต้น

อันตรายและความเสี่ยง[แก้]

การทำงานที่เกี่ยวข้องกับสารกัมมันตภาพรังสีเป็นเวลานานอาจทำให้เนื้อเยื่อบางส่วนของร่างกายเสียหาย หรือก่อให้เกิดมะเร็งในส่วนต่าง ๆ ของร่างกายได้ อาทิเช่น มะเร็งเม็ดเลือดขาว และยังทำให้ผู้ที่ได้รับมีความผิดปกติทางเซลล์พันธุกรรมเช่น สัตว์เกิดไม่มีแขน ไม่มีขา ไม่มีตา ไม่มีสมอง และยังทำลายคนที่ไม่รู้วิธีป้องกันป่วยลง แต่อันตรายจากรังสีในปัจจุบันที่ได้รับมากที่สุดคือ ถ่านไฟฉายแต่จะเป็นรังสีจากโคบอล 60 ซึ่งมีวิธีการคือ อย่าแกะสังกะสีออก และใช้แล้วควรทิ้งทันที โดยทั่วไปรังสีที่เจอเป็นอันดับ 2 คือ รังสีเอกซ์ตามโรงพยาบาลในห้องเอกซ์เรย์ ซึ่งจะมีป้ายเตือนไว้หน้าห้องแล้ว และไม่ควรที่จะเข้าใกล้มากนัก หากพบว่ามีวัตถุที่แผ่รังสี ควรที่จะหลีกไป แล้วแจ้งเจ้าหน้าที่ที่เกี่ยวข้อง หากไม่แน่ใจก็ให้สอบถามผู้รู้เช่น ครูโรงเรียนมัธยม หรือเจ้าหน้าที่

การใช้พลังงานนิวเคลียร์ในประเทศไทย[แก้]

สำหรับประเทศไทย ได้มีการจัดตั้งสำนักงานพลังงานปรมาณูเพื่อสันติ ผ่านทาง พระราชบัญญัติพลังงานปรมาณูเพื่อสันติ พุทธศักราช 2504 โดยสำนักงานพลังงานปรมาณูเพื่อสันติเริ่มเดินเครื่องปฏิกรณ์ปรมาณูวิจัยเข้าสู่ภาวะวิกฤตได้เมื่อวันที่ 27 ตุลาคม พ.ศ. 2505

ถึงแม้ว่าตอนนี้ยังไม่ปรากฏการใช้พลังงานนิวเคลียร์ในประเทศไทย แต่ปรากฏความพยายามสร้างโรงงานปรมาณูจากหลายฝ่าย

ความจำเป็นและเหตุผลรองรับในการนำพลังงานนิวเคลียร์มาใช้ในประเทศ[แก้]

ในการพัฒนาเศรษฐกิจและสังคม จากการศึกษาในต่างประเทศ พบว่า ตั้งแต่ พ.ศ. 2393 เป็นต้นมาจนถึงปัจจุบัน การบริโภคพลังงานของโลกเพิ่มขึ้นเพียง 4 เท่า ในช่วง พ.ศ. 2525 - 2533 ความต้องการบริโภคพลังงานเพิ่มขึ้น 24% และจะเพิ่มขึ้นเป็น 50 - 70% ใน พ.ศ. 2563 ถึงแม้จะมีความพยายามอย่างมากที่จะใช้พลังงานอย่างประหยัด และมีประสิทธิภาพ สำหรับประเทศไทยก็ตกอยู่ในภาวะเดียวกัน คือ การบริโภคพลังงานของประชาชนมีอัตราสูงขึ้นเรื่อยๆ อย่างไม่มีขีดจำกัด ในขณะเดียวกันทิศทางการพัฒนาประเทศกำลังมุ่งหน้าไปสู่การพัฒนาอุตสาหกรรม พลังงานถือว่าเป็นปัจจัยที่จะเกื้อหนุน ผลักดันอุตสาหกรรมและเศรษฐกิจให้ก้าวไกลไปได้ พลังงานจะต้องมีราคาถูก รวมทั้งมีใช้อย่างพอเพียง มิฉะนั้นจะทำให้การพัฒนาด้านอุตสาหกรรมต้องหยุดชะงัก และนักลงทุนต่างชาติรวมทั้งในประเทศ จะเลิกเชื่อถือรัฐบาลที่ไปเชิญชวนให้มาลงทุนแล้วไม่สร้างปัจจัยพื้นฐานไว้รองรับ จึงมาถึงคำถามที่ว่า ไทยมีพลังงานสำรองไว้ใช้ในอนาคตสำหรับการพัฒนาอุตสาหกรรมเพียงพอหรือไม่ ในขณะที่ความต้องการใช้พลังงานเพิ่มขึ้นเรื่อยๆ นั้น ทางเลือกที่จำเป็นที่จะต้องกระทำ เพื่อให้เกิดความมั่นใจว่า ในอนาคตไทยจะไม่ขาดแคลนพลังงาน ก็คือ การหาแหล่งพลังงานใหม่เข้ามาสำรองแหล่งพลังงานที่กำลังจะหมดไป สำหรับแหล่งพลังงานที่มองเห็นได้เด่นชัดซึ่งจะมีบทบาทอย่างมากที่จะเข้ามาเป็นพลังงานทดแทนน้ำมันถ่านหิน และก๊าซธรรมชาติ คือ พลังงานนิวเคลียร์ โดยจะนำมาใช้ในรูปของ โรงไฟฟ้านิวเคลียร์ เมื่อพิจารณาถึงทางเลือกในการผลิตกระแสไฟฟ้าซึ่งเป็นปัจจัยพื้นฐานสำหรับการประกอบอุตสาหกรรมและอื่นๆ นั้น จะเห็นว่า การผลิตไฟฟ้าจากเขื่อนจะมีต้นทุนต่ำสุดแต่เมื่อครั้งใดที่รัฐบาลมีนโยบายที่จะสร้างเขื่อนก็มักจะมีกลุ่มอนุรักษ์ธรรมชาติออกมาต่อต้าน จนโครงการหลายแห่งต้องยืดเวลาออกมา หรือไม่ก็ล้มเลิกไป ดังนั้น รัฐบาลจึงจำเป็นต้องผลิตกระแสไฟฟ้าโดยใช้ถ่านหินหรือน้ำมัน ซึ่งมีต้นทุนการผลิตสูง และเสี่ยงต่อความไร้เสถียรภาพด้านพลังงาน เนื่องจากทั้งถ่านหินและน้ำมันจะต้องสั่งซื้อจากต่างประเทศเป็นหลัก แม้จะมีแหล่งถ่านหินอยู่จำนวนหนึ่งแต่ก็สามารถใช้ในการผลิตกระแสไฟฟ้าตามแผนได้อีกในระยะเวลาเพียง 10 ปี เท่านั้น จึงคาดกันว่าในทศวรรษหน้าการผลิตพลังงานของประเทศต้องเผชิญทางเลือกสามทางที่ไม่สามารถหลีกเลี่ยงได้ คือ นำเข้าถ่านหิน, นำเข้าเทคโนโลยีนิวเคลียร์ หรือทั้งถ่านหินและเทคโนโลยีนิวเคลียร์

หลักการนำนิวเคลียร์มาใช้[แก้]

ตามแผนพัฒนาเศรษฐกิจและสังคมแห่งชาติฉบับที่ 7 (พ.ศ. 2535 - 2539) ได้มีการระบุไว้ในแผนพัฒนาพลังงานฯว่า "…ให้มีการพิจารณาศึกษาความเหมาะสมในการนำพลังงานนิวเคลียร์มาใช้ประโยชน์ในการผลิตกระแสไฟฟ้าทั้งทางเศรษฐศาสตร์ เทคโนโลยี และความปลอดภัย…" ดังนั้น จังมีการพิจารณาที่จะนำโรงไฟฟ้านิวเคลียร์มาใช้ในประเทศไทย โดยพิจารณาจากความจำเป็น 2 ประการ คือ

ประการแรก
เนื่องจากตามแผนการขยายกำลังผลิตไฟฟ้าของการไฟฟ้าฝ่ายผลิตแห่งประเทศไทยพบว่า หลังจากปีพุทธศักราช 2539 เป็นต้นไป ประเทศไทยจะเริ่มขาดแคลนแหล่งพลังงาน ทั้งก๊าซธรรมชาติ และถ่านหินที่มีอยู่จะมีประมาณไม่เพียงพอที่จะมาป้อนโรงไฟฟ้าที่สร้างขึ้นใหม่ ไทยจะต้องหันไปพึ่งพาการนำเข้าแหล่งกำเนิดพลังงานจากต่างประเทศ โดยจะเริ่มมีการนำเข้าถ่านหินมาใช้ เสถียรภาพการผลิตไฟฟ้าของประเทศย่อมไปผูกติดกับการนำเข้าถ่านหินมากขึ้น เพราะการไฟฟ้าฝ่ายผลิตแห่งประเทศไทยมีความสามารถในการเก็บกักถ่านหินจากต่างประเทศไว้ได้เพียง 3 วันเท่านั้น หากเกิดเหตุอะไรขึ้นที่ทำให้นำเข้าถ่านหินไม่ได้วันนั้นประเทศไทยจะต้องได้รับความเดือดร้อนอย่างมาก หากจะเปรียบเทียบกับพลังงานนิวเคลียร์ ซึ่งต้องสั่งนำเข้าเชื้อเพลิงเช่นกัน แต่ เชื้อเพลิงเหล่านี้เปลี่ยนปีละหนึ่งครั้ง ครั้งละ 25 ตัน ถือว่าเป็นจำนวนน้อยมากและไม่มีผลกระทบหากจะถูกตัดขาดการส่งเชื้อเพลิง ดังนั้น จึงมีโรงไฟฟ้านิวเคลียร์ชนิดเดียวเท่านั้นที่เป็นไปได้ที่จะมาช่วย แบ่งเบาเสถียรภาพด้านพลังงานของประเทศได้ดีที่สุด
ประการที่สอง
หากมองในแง่ผลกระทบต่อสิ่งแวดล้อมแล้ว จะเห็นว่า การที่ปล่อยให้ใช้โรงไฟฟ้าถ่านหินเพิ่มขึ้น จะมีการปล่อยก๊าซพิษออกสู่บรรยากาศมากขึ้น โดยมีก๊าซคาร์บอนไดออกไซด์ ก๊าซซัลเฟอร์ไดออกไซด์ และก๊าซไนโตรเจนออกไซด์ ซึ่งเป็นสาเหตุให้เกิด มลพิษ ที่จะทำลายสิ่งแวดล้อมจากการเกิดฝนกรด หรือการเกิดปรากฏการณ์เรือนกระจก ที่จะมีผลต่อความผันผวนของฤดูกาล แต่เมื่อเปรียบเทียบกับการใช้โรงไฟฟ้านิวเคลียร์แล้วจะไม่มีก๊าซต่างๆ เหล่านี้เกิดขึ้น นอกจากนี้โรงไฟฟ้าถ่านหินจะเหลือขี้เถ้าตกค้างในปริมาณมาก โดยที่โรงไฟฟ้านิวเคลียร์จะมีกากเชื้อเพลิงใช้แล้วในปริมาณที่น้อยกว่า และสามารถจัดเก็บไว้ในโรงไฟฟ้าได้นานถึง 30 ปี ตลอดชั่วชีวิตการใช้งานของโรงไฟฟ้า โดยไม่เกิดปัญหาส่งผลกระทบต่อสิ่งแวดล้อม

ดังนั้น จากเหตุผลที่กล่าวมา ประกอบกับการก่อสร้างโรงไฟฟ้านิวเคลียร์จำเป็นต้องใช้เวลาดำเนินการล่วงหน้าเป็นเวลานานประมาณ 12 ปี จึงจะสามารถก่อสร้างเสร็จเดินเครื่องจ่ายไฟฟ้าให้ทันความต้องการได้ ในปัจจุบันจึงได้มีการพิจารณาที่จะนำโรงไฟฟ้านิวเคลียร์มาใช้ภายในประเทศเป็นอีกทางเลือกหนึ่ง และเพื่อให้เกิดความมั่นใจและภาคภูมิใจยิ่งขึ้นว่า หากเลือกโรงไฟฟ้านิวเคลียร์มาใช้ในการแก้ปัญหาด้านพลังงานของชาติจะเป็นการตัดสินใจที่ถูกต้อง จึงควรที่จะได้พิจารณาถึงปัจจัยด้านเศรษฐกิจ ความปลอดภัย และสิ่งแวดล้อมด้วย

เหตุผลรองรับด้านเศรษฐกิจ[แก้]

จากการศึกษาเปรียบเทียบต้นทุนการผลิตและราคาของกระแสไฟฟ้าที่ผลิตได้ในเชิงเศรษฐศาสตร์ของกองพลังปรมาณู ฝ่ายวิศวกรรมพลังความร้อน การไฟฟ้าฝ่ายผลิตแห่งประเทศไทย โดยปรับตัวแปรต่างๆ ให้มีลักษณะเฉพาะเป็นของประเทศไทย โดยโรงไฟฟ้าต้นแบบทั้งถ่านหิน และนิวเคลียร์ มีขนาด 1,200 เมกกะวัตต์ พบว่า ต้นทุนการก่อสร้างของโรงไฟฟ้านิวเคลียร์จะสูงกว่าโรงไฟฟ้าถ่านหินในขั้นต้น แต่ต้นทุนการใช้เชื้อเพลิงจะต่ำกว่ามากในช่วงของการผลิต ซึ่งมีผลทำให้ต้นทุนการผลิตของโรงไฟฟ้านิวเคลียร์ต่ำกว่าและเมื่อเปรียบเทียบกับโรงไฟฟ้าชนิดอื่นแล้วจะพบว่า โรงไฟฟ้านิวเคลียร์มีข้อได้เปรียบหลายประการ คือ ต้นทุนการผลิตไฟฟ้ามีราคาถูก ต้นทุนผลิตไฟฟ้ามีเสถียรภาพสูง เสริมความมั่นคงด้านการผลิตไฟฟ้าได้เป็นอย่างดี และสามารถผลิตกระแสไฟฟ้าได้ในปริมาณที่มากกว่า

เหตุผลรองรับด้านความปลอดภัย[แก้]

ในด้านความปลอดภัยนั้น บรรดานักวิชาการและผู้ที่เกี่ยวข้องต่างก็ตระหนักถึงภัยอันตรายจากรังสีเป็นอย่างดีไม่ยิ่งหย่อนไปกว่าประชาชน ฉะนั้น การจะนำพลังงานนิวเคลียร์มาใช้ จำเป็นต้องพยายามหาทางป้องกันทุกวิถีทางที่จะมิให้เกิดอันตรายขึ้น การออกแบบระบบปฏิกรณ์นิวเคลียร์ได้ระดมมาตรการความปลอดภัยไว้หลายขั้น คือ

  1. ระบบการทำงานของปฏิกรณ์นิวเคลียร์ส่วนที่เกี่ยวข้องกับรังสีจะเป็นระบบปิดไม่สัมผัสสิ่งแวดล้อม
  2. การออกแบบ ก่อสร้าง และเดินเครื่องจะต้องดำเนินการภายใต้โปรแกรมประกันคุณภาพที่เข้มงวด
  3. ยูเรเนียมที่ใช้เป็นเชื้อเพลิงนั้นจะมียูเรเนียม 235 ซึ่งเป็นตัวพลังงานหลัก อยู่ในสัดส่วนที่ต่ำมากเพียงร้อยละ 3 แทนที่จะมากกว่าร้อยละ 90 อย่างกรณีของระเบิดนิวเคลียร์
  4. เมื่ออุณหภูมิหรือความร้อนในปฏิกรณ์นิวเคลียร์สูงขึ้น การแตกตัวของนิวเคลียสยูเรเนียมจะเพิ่มขึ้นในอัตราที่น้อยลง นั่นก็คือ การควบคุมตัวเองมิให้เร่งปลดปล่อยพลังงานออกมาจนกลายเป็นลูกระเบิด

นอกจากนี้ ถึงแม้จะมีสารกัมมันตรังสีหลุดออกมาจากยูเรเนียมซึ่งถูกอัดให้เป็นเม็ดได้บ้าง ก็จะถูกขังไว้ภายในแท่งเชื้อเพลิงซึ่งทำด้วยโลหะห่อหุ้มอยู่ และยังมีหม้อปฏิกรณ์ซึ่งทำด้วยเหล็กหนาประมาณ 6 นิ้ว หุ้มอยู่อีกชั้นหนึ่ง รวมทั้งยังมีอาคารคลุมปฏิกรณ์ซึ่งเป็นอาคาร 2 ชั้น และมีความแข็งแรงทนทานต่อแรงแผ่นดินไหวและขีปนาวุธชนได้อาคารชั้นนอกจะทำด้วยคอนกรีตเสริมเหล็กหนาประมาณ 1 เมตร ดังนั้น โอกาสที่โรงไฟฟ้านิวเคลียร์จะปล่อยรังสีออกสู่สิ่งแวดล้อม หรือการระเบิดของโรงไฟฟ้านิวเคลียร์จึงเป็นไปได้ค่อนข้างยาก

ในด้านความปลอดภัย มีข้อมูลยืนยันจากการประชุมทางวิชาการที่ประเทศฟินแลนด์ เมื่อเดือนพฤษภาคม พุทธศักราช 2535 พบว่า การใช้เชื้อเพลิงทุกแบบมีอัตราการเสี่ยงสูงที่สุด

เหตุผลรองรับด้านสิ่งแวดล้อม[แก้]

สำหรับปัจจัยด้านสิ่งแวดล้อมนั้น ดังได้กล่าวมาแล้ว ตั้งแต่ต้นว่า การใช้เชื้อเพลิงนิวเคลียร์ จะทำให้ปลอดภัยจากภาวะปฏิกิริยาเรือนกระจก ปลอดภัยจากภาวะฝนกรด ซึ่งเป็นอันตรายต่อสิ่งมีชีวิตในโลก ตลอดจนไม่ทำให้อุณหภูมิของโลกเพิ่มสูงขึ้นมากเหมือนอย่างการใช้เชื้อเพลิงอย่างอื่น นอกจากนี้ โรงไฟฟ้านิวเคลียร์ยังใช้พื้นที่ในการก่อสร้างน้อยกว่าและไม่ทำลายพื้นที่ป่าเขา เหมือนอย่างการสร้างเขื่อนสำหรับโรงไฟฟ้าพลังน้ำ

อ้างอิง[แก้]

  • ชาณิกา ไชฮะกิจ จากสำนักงานพลังงานปรมาณูเพื่อสันติ
  • สมพร จองคำ กองฟิสิกส์ พปส http://www.egat.co.th/me/nuc/Knowledge/nuceng.html