ผู้ใช้:Thitut/ทดลองเขียน/N1 (จรวด)

จากวิกิพีเดีย สารานุกรมเสรี

N1 (จาก Raketa-nositel, "จรวดบรรทุก"), หรือ Н1 (จาก Ракета-носитель) ในภาษารัสเซีย[1] เป็น super heavy-lift launch vehicle มีจุดมุ่งหมายเพื่อขนส่งน้ำหนักบรรทุกไปเกินกว่าวงโคจรระดับต่ำของโลก. N1 ของโซเวียตเป็นคู่เหมือนกับจรวด แซตเทิร์น 5 ของอเมริกันและมีจุดประสงค์ที่จะทำให้มนุษย์สามารถเดินทางไปยังดวงจันทร์ของโลกและไกลกว่านั้น[2] โดยเริ่มมีการวิจัยตั้งแต่ปี 1959[3] ส่วนแรกของมันยังคงเป็นส่วนของจรวดที่มีพละกำลังมากที่สุดเท่าที่เคยสร้างมา[4] แต่ว่าจรวด N1 ทั้งหมดสี่ลำที่เคยถูกปล่อยนั้น ส่วนแรกได้ทำงานล้มเหลว

N1/L3
หน้าที่จรวดขนส่งมนุษย์สู่ดวงจันทร์
ผู้ผลิตOKB-1
ประเทศสหภาพโซเวียต
ขนาด
สูง105.3 เมตร (345 ฟุต)*[5]
เส้นผ่านศูนย์กลาง17.0 เมตร (55.8 ฟุต)*[6]
มวล2,750,000 กิโลกรัม (6,060,000 ปอนด์)
ท่อน5
ความจุ
น้ำหนักบรรทุกสู่ LEO
มวล95,000 kg (209,000 lb)[7]
น้ำหนักบรรทุกสู่ TLI
มวล23,500 kg (51,800 lb)
ประวัติการบิน
สถานะล้มเหลว, ยกเลิก
จุดส่งตัวLC-110, ไบโคนูร์
จำนวนเที่ยวบิน4
สำเร็จ0
ล้มเหลว4
เที่ยวบินแรก21 กุมภาพันธ์ 1969
เที่ยวบินสุดท้าย23 พฤศจิกายน 1972
ท่อนแรก – บล็อก A
เส้นผ่านศูนย์กลาง17.0 m (55.8 ft)
เครื่องยนต์30 NK-15
แรงส่ง45,400 kN (10,200,000 lbf)
แรงดลจำเพาะ330 second (3.2 กิโลเมตรต่อวินาที)
ระยะเวลาการเผาไหม้125 s
เชื้อเพลิงRP-1/LOX
ท่อนที่สอง – บล็อก B
เครื่องยนต์8 NK-15V
แรงส่ง14,040 kN (3,160,000 lbf)
แรงดลจำเพาะ346 second (3.39 กิโลเมตรต่อวินาที)
ระยะเวลาการเผาไหม้120 s
เชื้อเพลิงRP-1/LOX
ท่อนที่สาม – บล็อก V
เครื่องยนต์4 NK-21
แรงส่ง1,610 kN (360,000 lbf)
แรงดลจำเพาะ353 second (3.46 กิโลเมตรต่อวินาที)
ระยะเวลาการเผาไหม้370 s
เชื้อเพลิงRP-1/LOX
ท่อนที่สี่ (N1/L3) – บล็อก G (เดินทางออกจากโลก)
เครื่องยนต์1 NK-19
แรงส่ง446 kN (100,000 lbf)
แรงดลจำเพาะ353 second (3.46 กิโลเมตรต่อวินาที)
ระยะเวลาการเผาไหม้443 s
เชื้อเพลิงRP-1/LOX

N1-L3 ถูกออกแบบมาเพื่อแข่งขันกับโครงการอะพอลโล ของสหรัฐอเมริกาเพื่อลงจอดบนดวงจันทร์โดยใช้วิธีการนัดพบในวงโคจรดวงจันทร์ที่คล้ายกัน N1 พื้นฐานมีสามส่วนซึ่งจะบรรทุก L3 กับนักบินอวกาศสองคนขึ้นสู่วงโคจรโลกต่ำของโลก L3 มีส่วนหนึ่งที่ใช้สำหรับการจุดระเบิดเพื่อตั้งวงโคจรสู่ดวงจันทร์ อีกส่วนใช้สำหรับการแก้ไขวงโคจรระหว่างทาง การเข้าสู่วงโคจรดวงจันทร์ และใช้ในการลดความสูงลงสู่ดวงจันทร์ในช่วงแรก ยานลงจอดอวกาศนักบินเดียว Lk และยานโคจรดวงจันทร์นักบินคู่ Soyuz 7K-LOK จะกลับสู่โลก

N1-L3 ได้รับงบประมาณต่ำและรีบเร่งในเริ่มต้นพัฒนาตั้งแต่เดือนตุลาคม 1965 เกือบสี่ปีหลังจาก แซตเทิร์น 5 โครงการนี้หยุดชะงักจากการเสียชีวิตของหัวหน้านักออกแบบของเซียร์เกย์ โคโรเลฟในปี 1966 ความพยายามในยิงจรวด N1 ทั้งสี่ครั้งล้มเหลว ด้วยความพยายามครั้งที่สองส่งผลให้ยานพาหนะกระแทกกลับเข้าสู่แท่นยิงจรวดไม่นานหลังจากการปล่อยตัวและส่งผลให้เกิดหนึ่งในการระเบิดที่ไม่ใช่นิวเคลียร์ที่ใหญ่ที่สุดในประวัติศาสตร์ของมนุษย์ โครงการ N1 ถูกระงับในปี 1974 และยกเลิกอย่างเป็นทางการในปี 1976 รายละเอียดทั้งหมดของโครงการของโซเวียตเพื่อส่งมนุษย์ไปดวงจันทร์ ถูกเก็บเป็นความลับจนกระทั่งสหภาพโซเวียตใกล้จะล่มสลายในปี 1989[8]

ประวัติ[แก้]

เริ่มต้นในเดือนธันวาคม 1959, เซียร์เกย์ โคโรเลฟ แห่งสำนักงานออกแบบ OKB-1 ได้เสนอจรวดสามส่วนให้กับกองทัพโซเวียต N1 เป็นจรวดที่มีขนาดใหญ่ที่สุด ด้วยน้ำหนักบรรทุก 50-ตัน (110,000-ปอนด์) สำหรับสถานีอวกาศทางการทหาร และต่อมา สำหรับการขนส่งมนุษย์ผ่านดาวศุกร์และดาวอังคารในยาน TMK (คำย่อขอรัสเซียสำหรับยานอวกาศระหว่างดาวเคราะห์) ร่วมกับการพัฒนาเครื่องยนต์พลังงานนิวเคลียร์สำหรับจรวดส่วนบน[9] N2 เป็นขีปนาวุธข้ามทวีปที่มีขนาดเล็กกว่า โดยมีจุดมุ่งหมายเพื่อแข่งขันกับข้อเสนอจรวดร่วมสมัย UR-200 ของวลาดิมีร์ เชโลเมย์ และ N3 จะมาแทนที่จรวด R-7 ที่ใช้กันมากของโคโรเลฟ จนถึงจุดนี้ โครงการ N-series ยังอยู่ในการศึกษาวิจัยเท่านั้น ยังไม่มีการสร้างตัวจรวดจริง

The two other main rocket designers and design bureaus presented competing proposals at the time of the original N-series proposal. Vladimir Chelomei, Korolev's rival, presented his Universal Rocket (UR) series. The UR rockets used a common lower stage in various clustered configurations to meet a wide variety of payload requirements. Mikhail Yangel, perhaps the most successful of the three but with little political power, presented the small R-26 intended to replace the R-16, the much larger R-36 ICBM, and the SK-100, a space launcher based on a huge cluster of R-16's. In the end the military planners selected Chelomei's UR-100 as the new "light" ICBM, and Yangel's R-36 for the "heavy" role. They saw no need for any of the larger dedicated launchers, but also gave Korolev funding to develop a Molniya (8K78) adaptation of the R-7.

In March 1961, during a meeting at Baikonur, designers discussed the N1 design, along with the competing Glushko R-20 design.

Early Soviet lunar concepts[แก้]

Interactive 3D model of the rocket

In May 1961, the US announced the goal of landing a person on the moon by 1970. During the same month, the On Reconsideration of the Plans for Space Vehicles in the Direction of Defense Purposes report set the first test launch of the N1 rocket for 1965. In June, Korolev was given a small amount of funding to start N1 development between 1961 and 1963. At the same time, Korolev proposed a lunar mission based on the new Soyuz spacecraft using an Earth orbit rendezvous profile. Several Soyuz rocket launches would be used to build up a complete Moon mission package, including one for the Soyuz spacecraft, another for the lunar lander, and a few with cislunar engines and fuel. This approach, driven by the limited capacity of the Soyuz rocket, meant that a rapid launch rate would be required to assemble the complex before any of the components ran out of consumables on-orbit. Korolev subsequently proposed that the N1 be enlarged to allow a single launch lunar landing.

Meanwhile, Chelomei's OKB-52 proposed an alternate mission with much lower risk. Instead of a crewed landing, Chelomei proposed a series of circumlunar missions to beat the US to the vicinity of the moon. He also proposed a new booster for the mission, clustering three of his existing UR-200s (known as the SS-10 in the west) to produce a single larger booster, the UR-500. These plans were dropped when Glushko offered Chelomei the RD-270, which allowed the construction of the UR-500 in a much simpler "monoblock" design. He also proposed adapting an existing spacecraft design for the circumlunar mission, the single-cosmonaut LK-1. Chelomei felt that improvements in early UR-500/LK-1 missions would allow the spacecraft to be adapted for two cosmonauts.

The Strategic Missile Forces of the Soviet military was reluctant to support a politically motivated project with little military utility, but both Korolev and Chelomei pushed for a lunar mission. Between 1961 and 1964, Chelomei's less aggressive proposal was accepted, and development of his UR-500 and the LK-1 were given a relatively high priority.

Lunar N1 development starts[แก้]

Valentin Glushko, who then held a near-monopoly on rocket engine design in the Soviet Union, proposed the RD-270 engine using unsymmetrical dimethylhydrazine (UDMH) and nitrogen tetroxide (N2O4) propellants to power the newly enlarged N1 design. These hypergolic propellants ignite on contact, reducing the complexity of the engine, and were widely used in Glushko's existing engines on various ICBMs. The full flow staged combustion cycle RD-270 was tested successfully before program cancellation, achieving a higher specific impulse than the gas-generator cycle Rocketdyne F-1 despite the use of UDMH/N2O4 propellants with lower potential impulse. The F-1 engine was five years into its development at the time and still experiencing combustion stability problems.

Glushko pointed out that the US Titan II GLV had successfully flown crew with similar hypergolic propellants. Korolev felt that the toxic nature of the fuels and their exhaust presented a safety risk for crewed space flight, and that kerosene/LOX was a better solution. The disagreement between Korolev and Glushko over the question of fuels ultimately became a major issue that hampered progress.[10] [11]

Personal issues between the two played a role, with Korolev holding Glushko responsible for his incarceration at the Kolyma Gulag in the 1930s and Glushko considering Korolev to be cavalier and autocratic towards things outside his competence. The difference of opinions led to a falling out between Korolev and Glushko. In 1962, a committee was appointed to resolve the dispute and agreed with Korolev. Glushko refused outright to work on LOX/kerosene engines, and with Korolev in general. Korolev eventually gave up and decided to enlist the help of Nikolai Kuznetsov, the OKB-276 jet engine designer, while Glushko teamed up with other rocket designers to build the very successful Proton, Zenit, and Energia rockets.

Kuznetsov, who had limited experience in rocket design, responded with the NK-15, a fairly small engine which would be delivered in several versions tuned to different altitudes. To achieve the required amount of thrust, it was proposed that 30 NK-15s would be used in a clustered configuration. An outer ring of 24 engines and an inner ring of six engines would be separated by an air gap, with airflow supplied via inlets near the top of the booster. The air would be mixed with the exhaust in order to provide some degree of thrust augmentation, as well as engine cooling. The arrangement of 30 rocket engine nozzles on the N1's first stage could have been an attempt at creating a crude version of a toroidal aerospike engine system; more conventional aerospike engines were also studied.

N1-L3 lunar complex[แก้]

N1 imaged by US KH-8 Gambit reconnaissance satellite, 19 September 1968

Korolev proposed a larger N1 combined with the new L3 lunar package based on the Soyuz 7K-L3. The L3 combined rocket stages, the modified Soyuz, and the new LK lunar lander were to be launched by a single N1 to conduct a lunar landing. Chelomei responded with a clustered UR-500-derived vehicle, topped with the L1 spacecraft already under development, and a lander developed by his design bureau. Korolev's proposal was selected as the winner in August 1964, but Chelomei was told to continue with his circumlunar UR-500/L1 work.

When Khrushchev was overthrown later in 1964, infighting between the two teams started anew. In October 1965, the Soviet government ordered a compromise; the circumlunar mission would be launched on Chelomei's UR-500 using Korolev's Soyuz spacecraft in place of their own Zond ("probe") design, aiming for a launch in 1967, the 50th anniversary of the Bolshevik Revolution. Korolev, meanwhile, would continue with his original N1-L3 proposal. Korolev had clearly won the argument, but work on the L1 continued anyway, as well as the Zond.

In 1966, the US Project Gemini had reversed the Soviet lead in human space exploration, and Korolev was able to persuade Soviet leader Leonid Brezhnev to let him pursue his plans to make a lunar landing before the US.[ต้องการอ้างอิง]

After Korolev died in 1966 due to complications after minor surgery, work on N1-L3 was taken over by his deputy, Vasily Mishin. Mishin did not have Korolev's political astuteness or influence and was reputed to be a heavy drinker. These problems contributed to the eventual cancellation of the N1 and the lunar mission as a whole, as did four consecutive launch failures with no successes.

N1 vehicle serial numbers[แก้]

  • N1 1L – full scale dynamic test model, each stage was individually dynamically tested; the full N1 stack was only tested at 1/4 scale.[12]
  • N1 2L (1M1) – Facilities Systems Logistic Test and Training Vehicle (FSLT & TV); two first stages painted gray, third stage gray-white and L3 white.[13]
  • N1 3L – first launch attempt, engine fire, exploded at 12 km.
  • N1 4L – Block A LOX tank developed cracks; never launched, parts from Block A used for other launchers; rest of airframe structure scrapped.[14]
  • N1 5L – partially painted gray; first night launch; launch failure destroyed pad 110 East.
  • N1 6L – launched from the second pad 110 West, deficient roll control, destroyed after 51s.
  • N1 7L – all white, last launch attempt; engine cutoff at 40 กิโลเมตร (22 ไมล์ทะเล) caused propellant line hammering, rupturing the fuel system.
  • N1 8L and 9L – flight ready N1Fs with improved NK-33 engines in Block A, scrapped when the program was canceled.
  • N1 10L – uncompleted, scrapped along with 8L and 9L.

N1F[แก้]

Mishin continued with the N1F project after the cancellation of plans for a crewed Moon landing in the hope that the booster would be used to build the Zvezda moonbase. The program was terminated in 1974 when Mishin was replaced by Glushko. Two N1Fs were being readied for launch at the time, but these plans were canceled.

The two flight-ready N1Fs were scrapped and their remains could still be found around Baikonur years later used as shelters and storage sheds. The boosters were deliberately broken up in an effort to cover up the USSR's failed Moon attempts, which was publicly stated to be a paper project in order to fool the US into thinking there was a race going on. This cover story lasted until glasnost, when the remaining hardware was seen publicly on display.

Aftermath and engines[แก้]

The program was followed by the "Vulkan" concept for a huge launch vehicle using Syntin/LOX propellants, later replaced by LH2/LOX on the 2nd and 3rd stages. "Vulkan" was superseded by the Energia/Buran program in 1976.[15][16]

About 150 of the upgraded engines for the N1F escaped destruction. Although the rocket as a whole was unreliable, the NK-33 and NK-43 engines are rugged and reliable when used as a standalone unit. In the mid-1990s, Russia sold 36 engines for $1.1 million each and a license for the production of new engines to the US company Aerojet General.[17]

The US company Kistler Aerospace worked on incorporating these engines into a new rocket design with the intention of offering commercial launch services, but the attempt ended in bankruptcy. Aerojet also modified the NK-33 to incorporate thrust vector control capability for Orbital Science's Antares launch vehicle. Antares used two of these modified AJ-26 engines for first stage propulsion. The first four launches of the Antares were successful, but on the fifth launch the rocket exploded shortly after launch. Preliminary failure analysis by Orbital pointed to a possible turbopump failure in one NK-33/AJ-26. Given Aerojet's previous problems with the NK-33/AJ-26 engine during the modification and test program (two engine failures in static test firings, one of which caused major damage to the test stand) and the later in-flight failure, Orbital decided that the NK-33/AJ-26 was not reliable enough for future use.[18]

In Russia, N1 engines were not used again until 2004, when the remaining 70 or so engines were incorporated into a new rocket design, the Soyuz 3.[19][20] ข้อมูลเมื่อ 2005, the project has been frozen due to the lack of funding. Instead, the NK-33 was incorporated into the first stage of a light variant of the Soyuz rocket, which was first launched on 28 December 2013.[21]

รูปพรรณ[แก้]

The N1 was a very large rocket, standing 105 เมตร (344 ฟุต)* tall with its L3 payload. The N1-L3 consisted of five stages in total: the first three (N1) for insertion into a low Earth parking orbit, and another two (L3) for translunar injection and lunar orbit insertion. Fully loaded and fueled, the N1-L3 weighed 2,750 ตัน (6,060,000 ปอนด์). The lower three stages were shaped to produce a single frustum 17 เมตร (56 ฟุต)* wide at the base,[22] while the L3 section was mostly cylindrical, carried inside a shroud an estimated 3.5 เมตร (11 ฟุต)* wide.[23] The conical shaping of the lower stages was due to the arrangement of the tanks within, a smaller spherical kerosene tank on top of the larger liquid oxygen tank below.

During the N1's lifetime, a series of improved engines was introduced to replace those used in the original design. The resulting modified N1 was known as the N1F, but did not fly before the project's cancellation.

Block A first stage[แก้]

The first stage, Block A, was powered by 30 NK-15 engines arranged in two rings, the main ring of 24 at the outer edge of the booster and the core propulsion system consisting of the inner 6 engines at about half diameter.[24] The engines were the first ever staged combustion cycle engines. The control system was primarily based on differential throttling of the engines of the outer ring for pitch and yaw. The core propulsion system was not used for control.[25] The Block A also included four grid fins, which were later used on Soviet air-to-air missile designs. In total, the Block A produced 45,400 kN (10,200,000 lbf)[26][27][28] of thrust. This exceeded the 33,700 kN (7,600,000 lbf) thrust of the Saturn V.[29]

Engine control system[แก้]

The KORD (Russian acronym for KOntrol Raketnykh Dvigateley—literally "Control (of) Rocket Engines"—Russian: Контроль ракетных двигателей)[30] was the automatic engine control system devised to throttle, shutdown and monitor the large cluster of 30 engines in Block A (the first stage). The KORD system controlled the differential thrusting of the outer ring of 24 engines for pitch and yaw attitude control by throttling them appropriately and it also shut down malfunctioning engines situated opposite each other. This was to negate the pitch or yaw moment diametrically opposing engines in the outer ring would generate, thus maintaining symmetrical thrust. Block A could perform nominally with two pairs of opposing engines shut down (26/30 engines). Unfortunately the KORD system was unable to react to rapidly occurring processes such as the exploding turbo-pump during the second launch.[31] Due to the deficiencies of the KORD system, a new computer system was developed for the fourth and last launch. The S-530 was the first Soviet digital guidance and control system.[32]

Block B second stage[แก้]

The second stage, Block B, was powered by 8 NK-15V engines arranged in a single ring. The only major difference between the NK-15 and -15V was the engine bell and various tunings for air-start and high-altitude performance. The N1F Block B replaced the NK-15 engines with upgraded NK-43 engines.

Block B could withstand the shutdown of one pair of opposing engines (6/8 engines).[31]

Block V third stage[แก้]

The upper stage, Block V (В/V being the third letter in the Russian alphabet), mounted four smaller NK-21 engines in a square. The N1F Block V replaced the NK-21 engines with NK-31 engines.

Block V could function with one engine shut down and three functioning correctly.[31]

Development problems[แก้]

The complex plumbing needed to feed fuel and oxidizer into the clustered arrangement of rocket engines was fragile and a major factor in the launch failures. The N1's Baikonur launch complex could not be reached by heavy barge. To allow transport by rail, all of the stages had to be shipped in pieces and assembled at the launch site.

The NK-15 engines had a number of valves that were activated by pyrotechnics rather than hydraulic or mechanical means, this being a weight-saving measure. Once shut, the valves could not be re-opened.[33] This meant that the engines for Block A were only test-fired individually and the entire cluster of 30 engines was never static test fired as a unit. Sergei Khrushchev stated that only two out of every batch of six engines were tested, and not the units actually intended for use in the booster. As a result, the complex and destructive vibrational modes (which ripped apart propellant lines and turbines), as well as exhaust plume and fluid dynamic problems (causing vehicle roll, vacuum cavitation, and other problems), in Block A were not discovered and worked out before flight.[34] Blocks B and V were static test fired as complete units.

Because of its technical difficulties and lack of funding for a comprehensive test campaign, the N1 never completed a test flight. Twelve test flights were planned, with only four flown. All four uncrewed launches ended in failure before first-stage separation. The longest flight lasted 107 seconds, just before first-stage separation. Two test launches occurred in 1969, one in 1971, and the final one in 1972.

Comparison with Saturn V[แก้]

A comparison of the U.S. Saturn V rocket (left) with the Soviet N1/L3. Note: human at bottom illustrates scale

At 105 เมตร (344 ฟุต)*, the N1-L3 was slightly shorter than the American Apollo-Saturn V (111 เมตร, 363 ฟุต*). The N-1 had a smaller overall diameter but a greater maximum diameter (17 m/56 ft* vs. 10 m/33 ft*). The N1 produced more thrust in each of its first three stages than the corresponding stages of the Saturn V. The N1-L3 produced more total impulse in its first four stages than the Saturn V did in its three (see table below).

The N1 was intended to place the approximately 95 t (209,000 lb)* L3 payload into low Earth orbit,[35] with the fourth stage included in the L3 complex was intended to place 23.5 t (52,000 lb)* into translunar orbit. In comparison, the Saturn V placed the roughly 45 t (100,000 lb)* Apollo spacecraft plus about 74.4 t (164,100 lb)* of fuel remaining in the S-IVB third stage for translunar injection into a similar Earth parking orbit.

The N1 used kerosene-based rocket fuel in all three of its main stages, while the Saturn V used liquid hydrogen to fuel its second and third stages, which yielded an overall performance advantage due to the higher specific impulse. The N1 also wasted available propellant volume by using spherical propellant tanks under a roughly conical external skin, while the Saturn V used most of its available cylindrical skin volume to house capsule-shaped hydrogen and oxygen tanks, with common bulkheads between the tanks in the second and third stages.[ต้องการอ้างอิง]

The N1-L3 would have been able to convert only 9.3% of its three-stage total impulse into Earth orbit payload momentum (compared to 12.14% for the Saturn V), and only 3.1% of its four-stage total impulse into translunar payload momentum, compared to 6.2% for the Saturn V.[ต้องการอ้างอิง]

Unlike Kennedy Space Center Launch Complex 39, the N1's Baikonur launch complex could not be reached by heavy barge. To allow transport by rail, all of the stages had to be shipped in pieces and assembled at the launch site. This led to difficulties in testing that contributed to the N1's lack of success.[ต้องการอ้างอิง]

The Saturn V also never lost a payload in two development and eleven operational launches, while four N1 development launch attempts all resulted in catastrophic failure, with two payload losses.[ต้องการอ้างอิง]

Apollo-Saturn V[36] N1-L3
Diameter, maximum 10 m (33 ft) 17 m (56 ft)
Height w/ payload 111 m (363 ft)* 105 m (344 ft)*
Gross weight 2,938 t (6,478,000 lb) 2,750 t (6,060,000 lb)[26]
First stage S-IC Block A
Thrust, SL 33,000 kN (7,500,000 lbf) 45,400 kN (10,200,000 lbf)[26][27]
Burn time 168 seconds 125 seconds
Second stage S-II Block B
Thrust, vac 5,141 kN (1,155,800 lbf) 14,040 kN (3,160,000 lbf)
Burn time 384 seconds 120 seconds
Orbital insertion stage S-IVB (burn 1) Block V
Thrust, vac 901 kN (202,600 lbf) 1,610 kN (360,000 lbf)
Burn time 147 seconds 370 seconds
Total impulse[Note 1] 7,711,000 kilonewton·seconds (1,733,600,000 pound·seconds) 7,956,000 kilonewton·seconds (1,789,000,000 pound·seconds)
Orbital payload 120,200 kg (264,900 lb)[Note 2] 95,000 kg (209,000 lb)
Injection velocity 7,793 m/s (25,568 ft/s)* 7,793 m/s (25,570 ft/s)*[Note 3]
Payload momentum 936,300,000 kilogram·meters per second (210,500,000 slug·feet per second) 740,300,000 kilogram·meters per second (166,440,000 slug·feet per second)
Propulsive efficiency 12.14% 9.31%
Earth departure stage S-IVB (burn 2) Block G
Thrust, vac 895 kN (201,100 lbf) 446 kN (100,000 lbf)
Burn time 347 seconds 443 seconds
Total impulse[Note 1] 8,022,000 kilonewton·seconds (1,803,400,000 pound·seconds) 8,153,000 kilonewton·seconds (1,833,000,000 pound·seconds)
Translunar payload 45,690 kg (100,740 lb) 23,500 kg (51,800 lb)
Injection velocity 10,834 m/s (35,545 ft/s)* 10,834 m/s (35,540 ft/s)*[Note 3]
Payload momentum 495,000,000 kilogram·meters per second (111,290,000 slug·feet per second) 254,600,000 kilogram·meters per second (57,240,000 slug·feet per second)
Propulsive efficiency 6.17% 3.12%

เชิงอรรถ[แก้]

  1. 1.0 1.1 Neglects first stage thrust increase with altitude
  2. Includes mass of Earth departure fuel
  3. 3.0 3.1 Assumed identical to Saturn V value

อ้างอิง[แก้]

  1. Barensky, C. Lardier, Stefan (2013). The Soyuz launch vehicle the two lives of an engineering triumph. New York: Springer. p. 82. ISBN 978-1-4614-5459-5.
  2. "N1". Encyclopedia Astronautica. สืบค้นเมื่อ 2011-09-07.
  3. "The N1 Moon Rocket - a brief History". สืบค้นเมื่อ 2013-01-01.
  4. http://www.raceforspace.co.uk/page1/page11/files/C8B04FC7-RfS_06_PRINT_lr%2026.pdf
  5. "Complex N1-L3 Components". S.P. Korolev Rocket-Space Corporation Energia. S.P. Korolev RSC "Energia" 4A Lenin Street, Korolev, Moscow area 141070 Russia. สืบค้นเมื่อ 13 June 2019.
  6. Rockets:Launchers N1
  7. Zak, Anatoly. "Soviet N1 moon booster". russianspaceweb.com. Anatoly Zak. สืบค้นเมื่อ 24 January 2015.
  8. history.com, News, he Soviet Response to the Moon Landing? Denial There Was a Moon Race at All, Until 1989, Russians claimed they were not trying to reach the Moon first and that the U.S. was in “a one-nation race." by Becky Little
  9. Lindroos, Marcus. The Soviet Manned Lunar Program MIT. Accessed: 4 October 2011.
  10. Wade, Mark. "Korolev, Chelomei, and Glushko - A Work In Progress". astronautix. astronautix.com. สืบค้นเมื่อ 19 January 2019.
  11. Lindroos, Marcus. "THE SOVIET MANNED LUNAR PROGRAM" (PDF). Massachusetts Institute of Technology. MIT OpenCourseWare. สืบค้นเมื่อ 19 January 2019.
  12. Vick, Charles P.; Berman, Sara D.; Lindborg, Christina. "The First Photograph of N1-L3 FSLT & TV (1M1) on the Pad. KH-4 CORONA Product Mission: 1102-1 -- 11 December 1967 -- Frame A065". GlobalSecurity.org. 2000-2015 GlobalSecurity.org. สืบค้นเมื่อ 1 March 2015.
  13. Vick, Charles P. "Unmasking N1-L3 An In-depth Analysis of a Critical Aspect of the Cold War: The Soviet Manned Lunar Programs, from the American and Russian Perspective". GlobalSecurity.org. 08-16-04, Revealing Some of the Top Secret Follow-on Reconnaissance Satellite Imagery & Data from Open Sources, By Charles P. Vick, 1999-04. สืบค้นเมื่อ 23 February 2015.
  14. Vick, Charles P.; Berman, Sara D.; Lindborg, Christina. "N1-L3 (1M1) on the Launch Pad". GlobalSecurity.org. 2000-2015 GlobalSecurity.org. สืบค้นเมื่อ 24 February 2015.
  15. Petrovitch, Vassili. "Vulkan Description". Buran-Energia.com. 2006-2015 by Vassili Petrovitch. สืบค้นเมื่อ 31 January 2015.
  16. Wade, Mark. "Vulkan". Astronautix.com. Encyclopedia Astronautica. คลังข้อมูลเก่าเก็บจากแหล่งเดิมเมื่อ 31 March 2015. สืบค้นเมื่อ 31 January 2015.
  17. Dawson, Linda (2016-11-22). The Politics and Perils of Space Exploration: Who Will Compete, Who Will Dominate? (ภาษาอังกฤษ). Springer. p. 14. ISBN 9783319388137.
  18. Rhian, Jason (24 November 2014). "Orbital's Cygnus - on a SpaceX Falcon 9? - SpaceFlight Insider". Spaceflight Insider. Spaceflight Insider. สืบค้นเมื่อ 13 February 2016.
  19. Harvey, Brian (2007). The rebirth of the Russian space program 50 years after Sputnik, new frontiers (1st ed.). New York: Springer. p. 201. ISBN 978-0-387-71356-4.
  20. Zak, Anatoly. "The history of the Soyuz-3 launch vehicle". russianspaceweb.com. Russian Space Web. สืบค้นเมื่อ 27 January 2015.
  21. "Soyuz 2-1v". Spaceflight 101. สืบค้นเมื่อ December 28, 2013.
  22. Zak, Anatoly. "N1 moon rocket". RussianSpaceWeb.com. Anatoly Zak. สืบค้นเมื่อ 24 January 2015.
  23. Portree, David S.F. (March 1995), "Part 1: Soyuz", Mir Hardware Heritage, NASA Reference Publication 1357, Houston TX: NASA
  24. Capdevila, Didier. "N1 Block A Motors". CapcomEspace.com. capcom espace, l'encyclopédie de l' espace - 2000-2012 Didier Capdevila. สืบค้นเมื่อ 18 February 2015.
  25. Chertok, Boris E. (2011). Rockets and people (PDF). Washington, DC: NASA. p. 199. ISBN 978-0-16-089559-3. สืบค้นเมื่อ 21 January 2015.
  26. 26.0 26.1 26.2 Harford, James (1997). Korolev : how one man masterminded the Soviet drive to beat America to the moon. New York ; Chichester: Wiley. p. 199. ISBN 9780471327219.
  27. 27.0 27.1 Jr, Robert C. Seamans, (2007). Project Apollo: The Tough Decisions. Washington D.C.: NASA. p. 120. ISBN 978-0-16-086710-1.{{cite book}}: CS1 maint: extra punctuation (ลิงก์)
  28. Wade, Mark (1997–2008). "N1". Encyclopedia Astronautica. สืบค้นเมื่อ 2009-04-25.
  29. Wade, Mark (1997–2008). "Saturn V". Encyclopedia Astronautica. คลังข้อมูลเก่าเก็บจากแหล่งเดิมเมื่อ 2011-10-07. สืบค้นเมื่อ 2009-04-25.
  30. "Контроль ракетных двигателей - Monitoring the Functioning of the Elements of Rocket Engines". radian-spb.ru. 2014 RADIAN. สืบค้นเมื่อ 3 February 2015.
  31. 31.0 31.1 31.2 Harford, James (1997). Korolev : how one man masterminded the Soviet drive to beat America to the moon. New York ; Chichester: Wiley. p. 294. ISBN 9780471327219.
  32. Gainor, Chris (2001). Arrows to the Moon. Burlington, Ontario: Apogee Books. pp. 155ñ156. ISBN 978-1-896522-83-8.
  33. Harford, James (1997). Korolev: how one man masterminded the Soviet drive to beat America to the moon. New York ; Chichester: Wiley. p. 304. ISBN 9780471327219.
  34. "Complex N1-L3 - Tests". S.P. Korlev Rocket and Space Corporation Energia - History. 2000 - 2013 Official website of S.P. Korolev RSC "Energia". สืบค้นเมื่อ 30 January 2015.
  35. Harford, James (1997). Korolev: how one man masterminded the Soviet drive to beat America to the moon. New York; Chichester: Wiley. p. 271. ISBN 978-0-471-32721-9.
  36. Orloff, Richard W (2001). Apollo By The Numbers: A Statistical Reference. NASA. Also PDF format. Accessed February 19, 2008 Published by Government Reprints Press, 2001, ISBN 1-931641-00-5.

บรรณานุกรม[แก้]

  • "L3". Encyclopedia Astronautica. สืบค้นเมื่อ 2019-05-07.
  • Matthew Johnson (2014-03-01). "N-1: For the Moon and Mars A Guide to the Soviet Superbooster". ARA Press; First edition. ISBN 9780989991407. {{cite journal}}: Cite journal ต้องการ |journal= (help)

แหล่งข้อมูลอื่น[แก้]