ผู้ใช้:Nitisart Joongtrakulrat/กระบะทราย

จากวิกิพีเดีย สารานุกรมเสรี
bn
สัญกรณ์
ฐาน b และเลขชี้กำลัง n
Graphs of y = bx for various bases b:                      ฐาน 10                      ฐาน e                      ฐาน 2                      ฐาน 1/2 Each curve passes through the point (0, 1) because any nonzero number raised to the power of 0 is 1. At x = 1, the value of y equals the base because any number raised to the power of 1 is the number itself.

การยกกำลัง เป็นการดำเนินการทางคณิตศาสตร์ ที่มีการเขียนอยู่ในรูป ซึ่งเกี่ยวข้องกับตัวเลขสองจำนวน คือ ฐาน และ เลขชี้กำลัง หรือ กำลัง ซึ่งอ่านว่า " ยกกำลัง "[1] เมื่อ เป็นจำนวนเต็มบวก การยกกำลังจึงเป็นการคูณซ้ำ ๆ กันของฐาน ซึ่งก็คือ เป็นผลคูณจากการคูณฐานซ้ำกันเป็นจำนวน ครั้ง[1]

เลขชี้กำลังมักจะแสดงเป็นตัวยก ซึ่งอยู่ทางด้านขวาของฐานในกรณีที่ เรียกว่า " ยกที่ กำลัง" " (ยก)กำลัง " " ที่กำลัง " " ที่ กำลัง"[2] หรือที่มีการเรียกโดยสั้นที่สุดว่า " ที่ "

เริ่มต้นจากข้อเท็จจริงพื้นฐานที่ระบุไว้ข้างต้นว่า จำนวนเต็มบวก ใด ๆ ซึ่ง คือจำนวน ครั้งของ ที่คูณกัน คุณสมบัติอื่น ๆ ของการยกกำลังจะตามมาโดยตรง โดยเฉพาะอย่างยิ่ง

In other words, when multiplying a base raised to one exponent by the same base raised to another exponent, the exponents add. From this basic rule that exponents add, we can derive that must be equal to 1, as follows. For any , . Dividing both sides by gives .

The fact that can similarly be derived from the same rule. For example, . Taking the cube root of both sides gives .

The rule that multiplying makes exponents add can also be used to derive the properties of negative integer exponents. Consider the question of what should mean. In order to respect the "exponents add" rule, it must be the case that . Dividing both sides by gives , which can be more simply written as , using the result from above that . By a similar argument, .

The properties of fractional exponents also follow from the same rule. For example, suppose we consider and ask if there is some suitable exponent, which we may call , such that . From the definition of the square root, we have that . Therefore, the exponent must be such that . Using the fact that multiplying makes exponents add gives . The on the right-hand side can also be written as , giving . Equating the exponents on both sides, we have . Therefore, , so .

The definition of exponentiation can be extended to allow any real or complex exponent. Exponentiation by integer exponents can also be defined for a wide variety of algebraic structures, including matrices.

Exponentiation is used extensively in many fields, including economics, biology, chemistry, physics, and computer science, with applications such as compound interest, population growth, chemical reaction kinetics, wave behavior, and public-key cryptography.

  1. 1.0 1.1 Nykamp, Duane. "Basic rules for exponentiation". Math Insight. สืบค้นเมื่อ August 27, 2020.
  2. Weisstein, Eric W. "Power". mathworld.wolfram.com (ภาษาอังกฤษ). สืบค้นเมื่อ 2020-08-27.