กล้องโทรทรรศน์อวกาศ

จากวิกิพีเดีย สารานุกรมเสรี

กล้องโทรทรรศน์อวกาศ คืออุปกรณ์สำหรับการสังเกตการณ์ทางดาราศาสตร์ที่อยู่ในอวกาศภายนอกในระดับวง โคจรของโลกเพื่อทำการสังเกตการณ์ดาวเคราะห์อันห่างไกล ดาราจักร และวัตถุท้องฟ้าต่าง ๆ ที่ช่วยให้มนุษย์ทำความเข้าใจกับจักรวาลได้ดีขึ้นการสังเกตการณ์ในระดับวงโคจรช่วยแก้ปัญหาทัศนวิสัยในการสังเกตการณ์บนโลกที่ มีอุปสรรคต่าง ๆ เช่น การแผ่รังสีแม่เหล็กไฟฟ้าในชั้นบรรยากาศ เป็นต้น นอกจากนี้การถ่ายภาพวัตถุท้องฟ้ายังสามารถทำได้ที่ความยาวคลื่นต่าง ๆ กัน ซึ่งบางอย่างไม่สามารถทำได้บนผิวโลก

โครงการกล้องโทรทรรศน์อวกาศที่ สำคัญของนาซา คือโครงการหอดูดาวเอก (Great Observatories) ซึ่งประกอบด้วยกล้องโทรทรรศน์อวกาศ 4 ชุดได้แก่ กล้องโทรทรรศน์อวกาศฮับเบิล กล้องรังสีแกมมาคอมพ์ตัน กล้องรังสีเอกซ์จันทรา และกล้องโทรทรรศน์อวกาศสปิตเซอร์ นอกจากนี้ยังมีกล้องโทรทรรศน์อวกาศอื่น ๆ อีกที่อยู่ในวงโคจรแล้ว และกำลังจะขึ้นสู่วงโคจรในอนาคต

กล้องโทรทรรศน์อวกาศฮับเบิล[แก้]

กล้องโทรทรรศน์อวกาศฮับเบิล คือ กล้องโทรทรรศน์ในวงโคจรของโลกที่กระสวยอวกาศดิสคัฟเวอรีนำส่งขึ้นสู่วงโคจร เมื่อเดือนเมษายน ค.ศ. 1990 ตั้งชื่อตามนักดาราศาสตร์ชาวอเมริกันชื่อ เอ็ดวิน ฮับเบิล กล้องโทรทรรศน์อวกาศฮับเบิลไม่ได้เป็นกล้องโทรทรรศน์อวกาศตัวแรกของโลก แต่มันเป็นหนึ่งในเครื่องมือวิทยาศาสตร์ที่สำคัญที่สุดในประวัติศาสตร์การ ศึกษาดาราศาสตร์ที่ทำให้นักดาราศาสตร์ค้นพบปรากฏการณ์สำคัญต่าง ๆ อย่างมากมาย กล้องโทรทรรศน์ฮับเบิลเกิดขึ้นจากความร่วมมือระหว่างองค์การนาซาและองค์การ อวกาศยุโรป

การที่กล้องโทรทรรศน์อวกาศฮับเบิลลอยอยู่นอกชั้นบรรยากาศของโลกทำ ให้มันมีข้อได้เปรียบเหนือกว่ากล้องโทรทรรศน์ที่อยู่บนพื้นโลก นั่นคือภาพไม่ถูกรบกวนจากชั้นบรรยากาศ ไม่มีแสงพื้นหลังท้องฟ้า และสามารถสังเกตการณ์คลื่นอัลตราไวโอเลตได้โดยไม่ถูกรบกวนจากชั้นโอโซนบนโลก ตัวอย่างเช่น ภาพอวกาศห้วงลึกมากของฮับเบิลที่ถ่ายจากกล้องโทรทรรศน์อวกาศฮับเบิล คือภาพถ่ายวัตถุในช่วงคลื่นที่ตามองเห็นที่อยู่ไกลที่สุดเท่าที่เคยมีมา

โครงการก่อสร้างกล้องโทรทรรศน์อวกาศเริ่มต้นมาตั้งแต่ปี ค.ศ. 1923 กล้องฮับเบิลได้รับอนุมัติทุนสร้างในช่วงปี ค.ศ. 1970 แต่เริ่มสร้างได้ในปี ค.ศ. 1983 การสร้างกล้องฮับเบิลเป็นไปอย่างล่าช้าเนื่องด้วยปัญหาด้านงบประมาณ ปัญหาด้านเทคนิค และจากอุบัติเหตุกระสวยอวกาศแชลเลนเจอร์ กล้องได้ขึ้นสู่อวกาศในปี ค.ศ. 1990 แต่หลังจากที่มีการส่งกล้องฮับเบิลขึ้นสู่อวกาศไม่นานก็พบว่ากระจกหลักมี ความคลาดทรงกลมอัน เกิดจากปัญหาการควบคุมคุณภาพในการผลิต ทำให้ภาพถ่ายที่ได้สูญเสียคุณภาพไปอย่างมาก ภายหลังจากการซ่อมแซมในปี ค.ศ. 1993 กล้องก็กลับมามีคุณภาพเหมือนดังที่ตั้งใจไว้ และกลายเป็นเครื่องมือในการวิจัยที่สำคัญและเป็นเสมือนฝ่ายประชาสัมพันธ์ ของวงการดาราศาสตร์

กล้องโทรทรรศน์อวกาศคอมพ์ตัน[แก้]

กล้องโทรทรรศน์อวกาศคอมพ์ตัน หรือ กล้องรังสีแกมมาคอมพ์ตัน (Compton Gamma-ray Observatory) เป็นหอสังเกตการณ์ดวงที่สองของนาซาในโครงการหอดูดาวเอกที่ส่งขึ้นสู่อวกาศ หลังจากที่ส่งกล้องโทรทรรศน์อวกาศฮับเบิลขึ้นไปก่อนหน้านั้น กล้องโทรทรรศน์อวกาศคอมพ์ตันตั้งชื่อตาม ดร. อาร์เทอร์ ฮอลลี คอมพ์ตัน นักวิทยาศาสตร์รางวัลโนเบลที่สร้างผลงานโดดเด่นด้านฟิสิกส์รังสี แกมมา กล้องคอมพ์ตันสร้างโดยสถาบัน TRW (ปัจจุบันคือสถาบันเทคโนโลยีอวกาศนอร์ทรอพ กรัมแมน) ในแคลิฟอร์เนีย ใช้เวลาสร้างทั้งสิ้น 14 ปี ขึ้นสู่อวกาศโดยกระสวยอวกาศแอตแลนติส เที่ยวบิน STS-37 เมื่อวันที่ 5 เมษายน ค.ศ. 1991 และได้ทำงานจนกระทั่งปลดระวางในวันที่ 4 มิถุนายน ค.ศ. 2000 กล้องคอมพ์ตันโคจรอยู่ในวงโคจรต่ำของโลกที่ระดับความสูงประมาณ 450 กิโลเมตร เพื่อหลบหลีกผลกระทบจากแถบรังสีแวนอัลเลน นับเป็นเครื่องมือทางฟิสิกส์ดาราศาสตร์ที่มีน้ำหนักมากที่สุดเท่าที่เคยส่ง ขึ้นสู่อวกาศ ด้วยน้ำหนักถึง 17,000 กิโลกรัม

กล้องโทรทรรศน์อวกาศสปิตเซอร์[แก้]

กล้องโทรทรรศน์อวกาศสปิตเซอร์ (อังกฤษ: Spitzer Space Telescope) หรือเดิมชื่อ Space Infrared Telescope Facility (SIRTF) เป็นกล้องสังเกตการณ์อวกาศอินฟราเรด เป็นกล้องอันดับที่สี่และสุดท้ายของโครงการหอดูดาวเอกของนาซา ตั้งชื่อตาม ดร. ไลแมน สปิตเซอร์ จูเนียร์ หนึ่งในนักดาราศาสตร์ที่ยิ่งใหญ่คนหนึ่งในคริสต์ศตวรรษที่ 20 ซึ่งเป็นผู้เสนอให้ติดตั้งกล้องโทรทรรศน์ไว้ในอวกาศเป็นคนแรกตั้งแต่กลางคริสต์ทศวรรษ 1940 เพื่อขจัดปัญหาการรบกวนของชั้นบรรยากาศโลก ซึ่งจะทำให้ได้ภาพที่ชัดเจนกว่าการตั้งกล้องไว้บนพื้นโลก โดยเขาใช้เวลากว่า 50 ปี จึงสามารถผลักดันแนวคิดนี้ได้สำเร็จ กล้องโทรทรรศน์อวกาศสปิตเซอร์ขึ้นสู่อวกาศเมื่อวันที่ 25 สิงหาคม ค.ศ. 2003 ด้วยจรวดเดลต้า 2 จากแหลมคานาวารัล และได้สิ้นสุดภารกิจแล้วเมื่อวันที่ 30 มกราคม ค.ศ. 2020[1]

กล้องโทรทรรศน์อวกาศสปิตเซอร์

วงโคจรของกล้องโทรทรรศน์อวกาศสปิตเซอร์[แก้]

สปิตเซอร์มีวงโคจรเป็นแบบ Heliocentric ซึ่งโคจรตามโลกไปรอบ ๆ ดวงอาทิตย์ใช้เวลา 1 ปี

ส่วนประกอบของกล้องโทรทรรศน์อวกาศสปิตเซอร์[แก้]

ตัวกล้องของสปิตเซอร์เป็นกระจกขนาด 85 เซนติเมตร ความยาวโฟกัส 10.20 เมตร ทำด้วย beryllium และหล่อเย็นด้วยฮีเลียมเหลวให้มีอุณหภูมิอยู่ที่ 5.5 องศาเคลวินตลอดเวลา ตัวกล้องมีน้ำหนักรวม 960 กิโลกรัม ประกอบด้วยเครื่องมือสำคัญ 3 ชิ้นคือ

กระจกของกล้องโทรทรรศน์อวกาศสปิตเซอร์

1.IRAC (Infrared Array Camera) เป็นชุดของ sensor ย่าน Infrared ใน 4 ความยาวคลื่นคือ 3.6 ไมโครเมตร, 4.5 ไมโครเมตร, 5.8 ไมโครเมตร และ 8 ไมโครเมตร ใช้ sensor ขนาด 256 x 256 pixel โดยมีฮีเลี่ยมเหลวหล่อเย็นที่อุณหภูมิ -250 องศา C 2.IRS (Infrared Spectrograph) เป็นชุดวิเคราะห์ spectrum ย่าน Infrared ความยาวคลื่นระหว่าง 5 - 38 ไมโครเมตร 3.MIPS (Multiband Imaging Photometer for Spitzer) เป็นชุด sensor Infrared ย่านความยาวคลื่น 24 - 160 ไมโครเมตร

ผลงานของกล้องโทรทรรศน์อวกาศสปิตเซอร์[แก้]

ผลงานชิ้นแรกคือภาพที่ส่งมาเมื่อวันที่ 18 ธันวาคม 2546 ภาพที่เด่นที่สุดคือ ดาราจักรรูปเกลียว M 81 ซึ่งอยู่ทางเหนือของกลุ่มดาวหมีใหญ่ ไกลจากโลก 12 ล้านปีแสง แสดงความสามารถของกล้องโทรทรรศน์อวกาศสปิตเซอร์ในการถ่ายภาพอวกาศที่ถูกปกคลุมด้วยกลุ่มก๊าซที่หนาแน่นซึ่งกล้องโทรทรรศน์แสงไม่สามารถมองเห็นได้ ทำให้เห็นการก่อกำเนิดของดาวฤกษ์และเห็นใจกลางของดาราจักร

เนื่องจาก Spitzer เป็นกล้องที่เน้นสำรวจแหล่งกำเนิดอินฟราเรด ดังนั้น Spitzer จึงมักใช้สำรวจวัตถุอุณหภูมิต่ำเช่น สเปกตรัมของแสงจากวัตถุประเภทดาวเคราะห์ หรือระบบดาวเคราะห์นอกระบบสุริยะ ตัวอย่างการค้นพบที่สำคัญคือ การค้นพบองค์ประกอบไอน้ำบนดาวเคราะห์ HD 209458 b โดยใช้เครื่องรับรู้อินฟราเรดย่าน 7.5 - 13.2 ไมโครเมตร

กล้องโทรทรรศน์อวกาศจันทรา[แก้]

กล้องโทรทรรศน์อวกาศจันทรา หรือ กล้องรังสีเอกซ์จันทรา (Chandra X-ray Observatory) เป็นดาวเทียมของนาซา ที่มี detector ที่สามารถตรวจจับรังสีเอกซ์ได้ จึงเป็นประโยชน์อย่างมากสำหรับการศึกษารังสี X-ray ในห้วงอวกาศ ถูกส่งขึ้นสู่อวกาศโดยยาน STS-93 เมื่อวันที่ 23 กรกฎาคม ค.ศ. 1999 และพร้อมปฏิบัติภารกิจในปี ค.ศ. 2014 กล้องโทรทรรศน์อวกาศจันทรา หรือ กล้องรังสีเอกซ์จันทรา (อังกฤษ: Chandra X-ray Observatory) เป็นดาวเทียมของนาซา ที่มี detector ที่สามารถตรวจจับรังสีเอกซ์ได้ จึงเป็นประโยชน์อย่างมากสำหรับการศึกษารังสี X-ray ในห้วงอวกาศ

กล้องโทรทรรศน์อวกาศจันทรา
Chandra artist illustration.jpg
ภาพประกอบของจันทรา
รายชื่อเก่าAdvanced X-ray Astrophysics Facility (AXAF)
ประเภทภารกิจกล้องรังสีเอกซ์
ผู้ดำเนินการนาซ่า / หอดูดาวฟิสิกส์ดาราศาสตร์สถาบันสมิธโซเนียน / CXC
COSPAR ID1999-040B
SATCAT no.25867
เว็บไซต์chandra.harvard.edu
ระยะภารกิจวางแผน: 5 ปี
ผ่านไป: 23 years, 4 months, 5 days
ข้อมูลยานอวกาศ
ผู้ผลิตทีอาร์ดับเบิลยู ออโตโมทีฟ
มวลขณะส่งยาน5,860 กิโลกรัม (12,930 ปอนด์)[2]
มวลแห้ง4,790 กิโลกรัม (10,560 ปอนด์)[2]
ขนาดปรับใช้: 13.8 × 19.5 เมตร (45.3 × 64.0 ฟุต)[3]
เก็บไว้: 11.8 × 4.3 เมตร (38.7 × 14.0 ฟุต)[2]
กำลังไฟฟ้า2,350 W[3]
เริ่มต้นภารกิจ
วันที่ส่งขึ้น23 กรกฎาคม 1999, 04:30:59.984 UTC[4]
จรวดนำส่งกระสวยอวกาศ โคลัมเบีย (STS-93)
ฐานส่งศูนย์อวกาศเคนเนดี LC-39B
ลักษณะวงโคจร
ระบบอ้างอิงวงโคจรค้างฟ้า
ระบบวงโคจรวงโคจรขั้วโลก
กึ่งแกนเอก80,795.9 กิโลเมตร (50,204.2 ไมล์)
ความเยื้อง0.743972
ระยะใกล้สุด14,307.9 กิโลเมตร (8,890.5 ไมล์)
ระยะไกลสุด134,527.6 กิโลเมตร (83,591.6 ไมล์)
อินคลิเนชั่น76.7156°
คาบการโคจร3809.3 นาที
ลองจิจูดของจุดโหนดขึ้น305.3107°
ระยะมุมจุดใกล้ศูนย์กลางที่สุด267.2574°
อนอมัลลีเฉลี่ย0.3010°
การเคลื่อนไหวเฉลี่ย0.3780 รอบต่อวัน
วันที่ใช้อ้างอิง4 กันยายน 2015, 04:37:54 UTC[5]
รอบการโคจร1358
กล้องโทรทรรศน์หลัก
ชนิดวอลเตอร์ ไทป์ 1[6]
เส้นผ่านศูนย์กลาง1.2 เมตร (3.9 ฟุต)[3]
ระยะโฟกัส10.0 เมตร (32.8 ฟุต)[3]
พื่นที่รับแสง0.04 ตารางเมตร (0.43 ตารางฟุต)[3]
ความยาวคลื่นรังสีเอกซ์: 0.12–12 nm (0.1–10 keV)[7]
ความละเอียด0.5 arcsec[3]
 

กล้องโทรทรรศน์อวกาศเจมส์ เวบบ์[แก้]

กล้องโทรทรรศน์อวกาศเจมส์ เวบบ์ (อังกฤษ: James Webb Space Telescope; JWST) เป็นกล้องโทรทรรศน์อวกาศที่ถูกพัฒนาขึ้นโดยองค์การนาซา องค์การอวกาศยุโรป (ESA) และองค์การอวกาศแคนาดา (CSA) มีเป้าหมายเพื่อสืบทอดภารกิจของกล้องโทรทรรศน์อวกาศฮับเบิลในการเป็นภารกิจฟิสิกส์ดาราศาสตร์หลักของนาซา[6][7] กล้องโทรทรรศน์อวกาศเจมส์ เวบบ์ถูกปล่อยขึ้นสู่อวกาศเมื่อวันที่ 25 ธันวาคม ค.ศ. 2021 มันสามารถสังเกตภาพในช่วงคลื่นอินฟราเรดด้วยความคมชัดและความไวแสงมากกว่ากล้องโทรทรรศน์อวกาศฮับเบิล นอกจากนี้ มันสามารถสังเกตวัตถุและเหตุการณ์ที่ห่างไกลในเอกภพได้ด้วย เช่น การกำเนิดและวิวัฒนาการของดาราจักร และลักษณะชั้นบรรยากาศของดาวเคราะห์นอกระบบ เป็นต้น

กล้องโทรทรรศน์อวกาศเจมส์ เวบบ์
James Webb Space Telescope
JWST spacecraft model 2.png
ภาพจำลองกล้องโทรทัศน์อวกาศเจมส์ เวบบ์
รายชื่อเก่าNext Generation Space Telescope (NGST; 1996–2002)
ประเภทภารกิจดาราศาสตร์
ผู้ดำเนินการNASA / องค์การอวกาศยุโรป / องค์การอวกาศแคนาดา / สถาบันวิทยาศาสตร์กล้องโทรทรรศน์อวกาศ[8]
เว็บไซต์webbtelescope.org
ระยะภารกิจ10 ปี (ขั้นต่ำตามแผน)
ข้อมูลยานอวกาศ
ผู้ผลิต
มวลขณะส่งยาน6161.4 กิโลกรัม[9]
ขนาด20.197 × 14.162 m (66.26 × 46.46 ft), ฉากกันแสงอาทิตย์
กำลังไฟฟ้า2 kW
เริ่มต้นภารกิจ
วันที่ส่งขึ้น25 ธันวาคม 2021, 12:20 UTC[10]
จรวดนำส่งอารีอาน 5 ECA (VA256)
ฐานส่งศูนย์อวกาศเกียนา, ELA-3
ผู้ดำเนินงานอารีอานสเปซ
ลักษณะวงโคจร
ระบบอ้างอิงจุดลากร็องฌ์ที่ 2 ระหว่างดาวโลก-ดวงอาทิตย์
ระบบวงโคจรวงโคจรฮาโล
ระยะใกล้สุด374,000 km (232,000 mi)[11]
ระยะไกลสุด1,500,000 km (930,000 mi)
คาบการโคจร6 เดือน
กล้องโทรทรรศน์หลัก
ชนิดระบบลดความบิดเบือนภาพสามกระจกแบบคอร์ช
เส้นผ่านศูนย์กลาง6.5 m (21 ft)
ระยะโฟกัส131.4 m (431 ft)
อัตราส่วนโฟกัสf/20.2
พื่นที่รับแสง25.4 m2 (273 sq ft)[12]
ความยาวคลื่น0.6–28.3 μm (ส้มถึงอินฟราเรดช่วงกลาง)
อุปกรณ์ส่งสัญญาณ
ย่านความถี่
  • S band: โทรมาตร การติดตาม และการควบคุม
  • Ka band: การรับข้อมูล
แบนด์วิดท์
  • S band ขาขึ้น: 16 kbit/s
  • S band ขาลง: 40 kbit/s
  • Ka band ขาลง: มากถึง 28 Mbit/s
เครื่องมือ
FGS-NIRISSเซ็นเซอร์นำทางความละเอียดสูงและตัวสร้างภาพคลื่นใกล้อินฟราเรดและสเปกโทรกราฟไร้แผ่นบัง
MIRIเครื่องมือวัดอินฟราเรดกลาง
NIRCamกล้องถ่ายคลื่นใกล้อินฟราเรด
NIRSpecสเปกโตรกราฟคลื่นใกล้อินฟราเรด
องค์ประกอบ
  • หน่วยรวมเครื่องมือวิทยาศาสตร์
  • องค์ประกอบกล้องโทรทรรศน์รับแสง
  • ยานอวกาศ (บัส และฉากกันแสงอาทิตย์)
JWST Launch Logo.png
สัญลักษณ์ภารกิจกล้องโทรทรรศน์อวกาศเจมส์ เวบบ์  

องค์ประกอบกล้องโทรทรรศน์รับแสง เป็นกระจกสะท้อนหลักของกล้องโทรทรรศน์อวกาศเจมส์ เวบบ์ ซึ่งประกอบไปด้วยกระจกเบริลเลียมเคลือบทองทรงหกเหลี่ยม 18 ส่วน ซึ่งประกอบกันเพื่อสร้างกระจกเส้นผ่านศูนย์กลาง 6.5 m (21 ft) — ใหญ่กว่ากระจกสะท้อนหลักของกล้องโทรทรรศน์อวกาศฮับเบิลขนาด 2.4 m (7 ft 10 in) เป็นอย่างมาก กล้องโทรทรรศน์อวกาศเจมส์ เวบบ์จะสังเกตการณ์ในช่วงคลื่นแสงที่มองเห็นได้ไปจนถึงคลื่นอินฟราเรดกลาง (0.6 to 28.3 μm) ซึ่งต่างจากฮับเบิลซึ่งสังเกตการณ์ตั้งแต่คลื่นใกล้อัลตราไวโอเลต คลื่นแสงที่มองเห็นได้ และคลื่นใกล้อินฟราเรด (0.1 to 1 μm) การที่เจมส์ เวบบ์สังเกตการณ์ในคลื่นที่ต่ำกว่าจะทำให้มันสามารถเห็นวัตถุที่เลื่อนไปทางแดงอย่างมากซึ่งมีเก่าและไกลเกินกว่าที่ฮับเบิลจะมองเห็นได้[8][9] ตัวกล้องโทรทรรศน์จะต้องถูกรักษาไว้ในสภาพเย็นจัดเพื่อที่จะสามารถสังเกตการณ์เคลื่อนอินฟราเรดได้ด้วยไม่มีการรบกวน มันจึงจะถูกปล่อยไปยังบริเวณจุดลากร็องฌ์ที่ 2 ระหว่างดาวโลก-ดวงอาทิตย์ ประมาณ 1.5 ล้าน กิโลเมตร (930,000 ไมล์) จากโลก (0.01 au – 3.9 เท่าระยะทางจากโลกสู่ดวงจันทร์).[10]ฉากกันแสงอาทิตย์ขนาดใหญ่ผลิตด้วยซิลิคอน และแคปตอนเคลือบอะลูมิเนียมจะช่วยรักษาอุณหภูมิของกระจกรับแสงและเครื่องมือวัดให้ต่ำกว่า 50 K (−223 °C; −370 °F).[11]

ศูนย์การบินอวกาศก็อดดาร์ดของนาซาเป็นผู้จัดการการพัฒนากล้องโทรทรรศน์อวกาศ และสถาบันวิทยาศาสตร์กล้องโทรทรรศน์อวกาศจะเป็นผู้ดำเนินการหลังจากการปล่อย[12] ผู้รับเหมาหลักคือนอร์ทธรอป กรัมแมน[13] ตัวกล้องโทรทรรศน์ถูกตั้งชื่อตามเจมส์ อี. เวบบ์[14] ซึ่งเป็นผู้บริหารองค์การนาซาตั้งแต่ปี 1961 ถึง 1968 และเป็นบุคคลสำคัญในโครงการอะพอลโล[15][16]

การพัฒนาเริ่มต้นขึ้นในปี 1996 สำหรับการปล่อยที่แรกเริ่มวางแผนไว้ในปี 2007 และใช้งบประมาณ 500 ล้านดอลลาร์สหรัฐ[17] โครงการนี้เกิดการล่าช้าและค่าใช้จ่ายสูงกว่างบประมาณอยู่หลายครั้ง เช่น การออกแบบใหม่ในปี 2005[18] ฉากกันแสงอาทิตย์ขาดระหว่างการทดสอบการกาง คำแนะนำจากคณะกรรมการตรวจสอบอิสระ การระบาดทั่วของโควิด-19[19][20][21] ปัญหากับจรวดอารีอาน 5[22] ปัญหากับตัวกล้องโทรทรรศน์เอง และปัญหาการสื่อสารระหว่างกล้องโทรทัศน์และจรวด[23] ความกังวลในกลุ่มนักวิทยาศาสตร์และวิศวกรที่เกี่ยวข้องเกี่ยวกับการปล่อยและการกางตัวของกล้องโทรทรรศน์ได้ถูกอธิบายเป็นอย่างดี[24][25]

การก่อสร้างเสร็จสิ้นช่วงปลายปี 2016 หลังจากนั้นจึงเริ่มช่วงการทดสอบอย่างครอบคลุม[26][27] กล้องโทรทรรศน์อวกาศเจมส์ เว็บบ์ถูกปล่อย ณ เวลา 12:20 UTC ในวันที่ 25 ธันวาคม 2021 ด้วยจรวดอารีอาน 5 จาก กูรู, เฟรนช์เกียนา บริเวณหาดทางตะวันออกเฉียงเหนือของทวีปอเมริกาใต้

ความสามารถ[แก้]

แผนภาพโดยคร่าวของความโปร่งใสของชั้นบรรยากาศโลกต่อคลื่นแม่เหล็กไฟฟ้าความถี่ต่างๆ รวมถึงแสงที่มองเห็นได้

กล้องโทรทรรศน์อวกาศเจมส์ เวบบ์มีมวลเพียงครึ่งหนึ่งของกล้องโทรทรรศน์อวกาศฮับเบิล แต่กระจกสะท้อนหลักของมันซึ่งประกอบไปด้วยกระจกเบริลเลียมเคลือบทองทรงหกเหลี่ยม 18 ชิ้น จะมีเส้นผ่านศูนย์กลางรวม 6.5 m (21 ft) และมีพื้นที่รับแสง 25.4 m2 (273 sq ft) มากกว่าพื้นที่ของกล้องฮับเบิลถึงหกเท่า[30]

กล้องโทรทรรศน์อวกาศเจมส์ เวบบ์นั้นถูกออกแบบมาเพื่อใช้ศึกษาดาราศาสตร์อินฟราเรด แต่ก็ยังสามารถมองเห็นแสงสีส้มและแดง รวมถึงคลื่นอินฟราเรดช่วงกลาง ขึ้นอยู่กับเครื่องมือที่ใช้ศึกษา การที่การออกแบบเน้นสำหรับการใช้ในคลื่นใกล้อินฟราเรดถึงอินฟราเรดช่วงกลางด้วยสามเหตุผลคือ

แสงที่มองเห็นได้ที่เปล่งออกมาจากวัตถุที่เลื่อนไปทางแดงมาก จะเลื่อนไปอยู่ในช่วงคลื่นอินฟราเรด วัตถุที่เย็นเช่นจานเศษฝุ่นและดาวเคราะห์เปล่งแสงมากที่สุดในคลื่นอินฟราเรด การศึกษาคลื่นนี้จากบนพื้นโลกหรือโดยการใช้กล้องโทรทรรศน์ที่มีอยู่ปัจจุบันเช่น ฮับเบิล นั้นเป็นไปได้ยาก กล้องโทรทรรศน์ภาคพื้นดินจะต้องสังเกตการณ์ผ่านชั้นบรรยากาศของโลก ถึงบดบังคลื่นอินฟราเรดหลายช่วง และแม้ในช่วงคลื่นที่ชั้นบรรยากาศไม่บดบัง สารเคมีเป้าหมายหลายชนิดเช่น น้ำ คาร์บอนไดออกไซด์ และมีเทน ก็มีอยู่แล้วในบรรยากาศของโลก ทำให้การวิเคราะห์ผลลับซับซ้อนขึ้นไปมาก กล้องโทรทรรศน์อวกาศที่มีอยู่ในปัจจุบันเช่น ฮับเบิล ก็ไม่สามารถศึกษาคลื่นช่วงนี้ได้ เนื่องจากกระจกของมันถูกรักษาไว้ในอุณหภูมิที่ต่ำไม่พอ (กระจกสะท้อนหลักของฮับเบิลถูกรักษาไว้ที่อุณหภูมิประมาณ 15 °C (288 K; 59 °F)) ตัวกล้องโทรทรรศน์เองจึงเปล่งคลื่นอินฟราเรดอย่างรุนแรง[31]

กล้องโทรทรรศน์อวกาศเจมส์ เวบบ์จะทำงานใกล้จุดลากร็องฌ์ที่ 2 ระหว่างโลก-ดวงอาทิตย์ ประมาณ 1,500,000 km (930,000 mi) ห่างจากวงโคจรของโลก เปรียบเทียบกับวงโคจรของฮับเบิลซึ่งอยู่ 550 km (340 mi) เหนือพื้นโลก และดวงจันทร์โคจรอยู่ห่างจากโลกประมาณ 400,000 km (250,000 mi) จากโลก ด้วยระยะทางที่ห่างไกลเท่านี้จะทำให้การซ่อมหลังการปล่อยหรือต่อเติมยกระดับส่วนเครื่องของเจมส์ เวบบ์ แทบจะเป็นไปไม่ได้ ตัวยานอวกาศจึงจะสามารถเข้าถึงได้เฉพาะในช่วงการสร้างและออกแบบเท่านั้น วัตถุที่อยู่ใกล้จุดลากร็องฌ์นี้สามารถโคจรรอบดวงอาทิตย์ไปพร้อมกับโลก ทำให้ตัวกล้องโทรทรรศน์มีระยะห่างคงที่โดยประมาณ[32] เจมส์ เวบบ์จะหันฉากกันแสงอาทิตย์และบัสเข้าสู่โลกและดวงอาทิตย์เพื่อสะท้อนแสงและความร้อนที่แผ่จากโลกและดวงอาทิตย์ และรักษาการสื่อสาร การเรียงตัวแนวนี้จะรักษาอุณหภูมิของยานอวกาศในอยู่ต่ำกว่า 50 K (−223 °C; −370 °F) ซึ่งจำเป็นจำหรับการสังเกตการณ์คลื่นอินฟราเรด[13][14]

อ้างอิง[แก้]

[15]


  1. Ending in 2020, NASA's Infrared Spitzer Mission Leaves a Gap in Astronomy. Jonathan O'Callaghan. Scientific American. June 4, 2019.
  2. 2.0 2.1 2.2 "Chandra X-ray Observatory Quick Facts". Marshall Space Flight Center. สืบค้นเมื่อ September 16, 2017.
  3. 3.0 3.1 3.2 3.3 3.4 3.5 "Chandra Specifications". NASA/Harvard. สืบค้นเมื่อ September 3, 2015.
  4. "International Flight No. 210: STS-93". Spacefacts.de. สืบค้นเมื่อ April 29, 2018.
  5. "Chandra X-Ray Observatory - Orbit". Heavens Above. September 3, 2015. สืบค้นเมื่อ September 3, 2015.
  6. "The Chandra X-ray Observatory: Overview". Chandra X-ray Center. สืบค้นเมื่อ September 3, 2015.
  7. Ridpath, Ian (2012). The Dictionary of Astronomy (2nd ed.). Oxford University Press. p. 82. ISBN 978-0-19-960905-5.
  8. "NASA JWST "Who are the partners in the Webb project?"". NASA. สืบค้นเมื่อ 18 November 2011. บทความนี้รวมเอาเนื้อความจากแหล่งอ้างอิงนี้ ซึ่งเป็นสาธารณสมบัติ
  9. Clark, Stephen [@StephenClark1] (23 December 2021). "The exact launch mass of the James Webb Space Telescope: 6161.4 kilograms. That figure includes 167.5 kg of hydrazine and 132.5 kg of dinitrogen tetroxide for the propulsion system" (ทวีต). สืบค้นเมื่อ 23 December 2021 – โดยทาง ทวิตเตอร์.
  10. อ้างอิงผิดพลาด: ป้ายระบุ <ref> ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อ NASA-20211221
  11. "James Webb Space Telescope". ESA eoPortal. สืบค้นเมื่อ 29 June 2015.
  12. "JWST Telescope". James Webb Space Telescope User Documentation. Space Telescope Science Institute. 2019-12-23. สืบค้นเมื่อ 2020-06-11. บทความนี้รวมเอาเนื้อความจากแหล่งอ้างอิงนี้ ซึ่งเป็นสาธารณสมบัติ
  13. "The Sunshield". nasa.gov. NASA. สืบค้นเมื่อ 28 August 2016. บทความนี้รวมเอาเนื้อความจากแหล่งอ้างอิงนี้ ซึ่งเป็นสาธารณสมบัติ
  14. Drake, Nadia (24 April 2015). "Hubble Still Wows At 25, But Wait Till You See What's Next". National Geographic.
  15. "สำเนาที่เก็บถาวร". คลังข้อมูลเก่าเก็บจากแหล่งเดิมเมื่อ 2016-05-05. สืบค้นเมื่อ 2016-03-24.