ไซคลอยด์

จากวิกิพีเดีย สารานุกรมเสรี
ไซคลอยด์เกิดจากการกลิ้งล้อกลม

ไซคลอยด์ (อังกฤษ: cycloid) คือเส้นโค้งชนิดหนึ่ง นิยามจากรอยเคลื่อนที่ของจุดจุดหนึ่งบนเส้นรอบรูปวงกลม (ล้อกลม) ซึ่งรูปวงกลมนั้นกลิ้งไปตามเส้นตรง ทำให้เกิดเส้นโค้งนูนเป็นลอนเป็นระยะ

ไซคลอยด์เป็นตัวอย่างหนึ่งของรูเลตต์ (roulette) ซึ่งเกิดจากกลิ้งล้อกลมบนเส้นโค้งอื่น และเป็นกรณีหนึ่งของโทรคอยด์ (trochoid) ซึ่งจุดไม่จำเป็นต้องอยู่บนเส้นรอบรูปวงกลม

สมการ[แก้]

ไซคลอยด์ที่สร้างขึ้นจากรูปวงกลมรัศมี r = 2 หน่วย

ไซคลอยด์ที่ลากผ่านจุดกำเนิด ซึ่งสร้างขึ้นโดยรูปวงกลมรัศมี r ที่กลิ้งบนแกน x มีสมการอิงตัวแปรเสริมดังนี้

x = r (t - \sin t) \,
y = r (1 - \cos t) \,

เมื่อ t เป็นจำนวนจริง คือมุมในหน่วยเรเดียนที่รูปวงกลมกลิ้งไป (บางครั้งอาจใช้ θ แทน t)

เส้นโค้งชนิดนี้สามารถหาอนุพันธ์ได้ทุกตำแหน่งยกเว้น บัพแหลม (cusp)

คือจุดที่สัมผัสกับแกน x ซึ่งอนุพันธ์จะกลายเป็น ∞ หรือ −∞ เมื่อเข้าใกล้จุดบัพแหลม ซึ่งตรงตามสมการเชิงอนุพันธ์สามัญดังนี้
\left (\frac{dy}{dx}\right) ^2 = \frac{2r-y}{y}

พื้นที่ใต้กราฟ[แก้]

เนื่องจากไซคลอยด์หนึ่งรอบ ที่สร้างโดยรูปวงกลมรัศมี r จากสมการอิงตัวแปรเสริมด้านบน จะได้ค่าของตัวแปรเสริม t ที่มีค่าอยู่ในช่วง [0, 2π]

และเนื่องจาก

\frac{dx}{dt} = r (1- \cos t)

เราสามารถคำนวณหาพื้นที่ใต้กราฟของไซคลอยด์หนึ่งรอบโดยการหาปริพันธ์ดังนี้

\begin{align}
A &= \int_{t=0}^{t=2 \pi} y \, dx = \int_{t=0}^{t=2 \pi} r^2 (1-\cos t) ^2 \, dt \\
&= \left. r^2 \left ( \frac{3}{2}t-2\sin t + \frac{1}{2} \cos t \sin t\right) \right|_{t=0}^{t=2\pi} \\
&= 3 \pi r^2
\end{align}

นั่นคือเท่ากับสามเท่าของพื้นที่ของรูปวงกลม

ความยาวเส้นโค้ง[แก้]

ความยาวของเส้นโค้งไซคลอยด์หนึ่งรอบ สามารถหาได้จากความยาวของส่วนย่อยๆ บนเส้นโค้ง ซึ่ง t มีค่าในช่วง [0, 2π]

\begin{align}
S &= \int_{t=0}^{t=2 \pi} \left (\left (\frac{dy}{dt}\right) ^2+\left (\frac{dx}{dt}\right) ^2\right) ^{1/2} \, dt \\
&= \int_{t=0}^{t=2 \pi} 2r \sin\left (\frac{t}{2}\right) \, dt \\
&= 8r
\end{align}

นั่นคือเท่ากับแปดเท่าของรัศมีของรูปวงกลม

ดูเพิ่ม[แก้]

แหล่งข้อมูลอื่น[แก้]