โรงไฟฟ้านิวเคลียร์

จากวิกิพีเดีย สารานุกรมเสรี
โรงไฟฟ้านิวเคลียร์
Doel Kerncentrale.JPG
โรงไฟฟ้าพลังงานนิวเคลียร์ที่ประเทศฝรั่งเศส
รายละเอียด
ประเภท พลังความร้อน
กำลังผลิต 600 - 1,200 เมกะวัตต์
เชื้อเพลิง ยูเรเนียม
ราคาก่อสร้าง สูงกว่า 135,000 ล้านบาท ต่อ 1,000 MW [1]
ค่าปลดระวาง สูงกว่า 30,000 ล้านบาท ต่อ 1,000 MW[2]
    
โรงผลิตไฟฟ้าพลังงานนิวเคลียร์ที่ Grafenrheinfeld, Bavaria, Germany. เครื่องปฏิกรณ์นิวเคลียร์อยู่ภายในอาคารเก็บกักรูปโดมที่อยู่ตรงกลาง, ด้านซ้ายและขวาเป็นหอหล่อเย็นซึ่งเป็นอุปกรณ์ระบายความร้อนที่ใช้กันทั่วไปในทุกโรงไฟฟ้าพลังงานความร้อน และเช่นกัน มันจะปล่อยไอน้ำจากส่วนของกังหันไอน้ำที่ไม่มีกัมมันตรังสีออกสู่สิ่งแวดล้อมภายนอก
โรงผลิตไฟฟ้าพลังงานนิวเคลียร์ที่ Jaslovské Bohunice ใน Slovakia

โรงไฟฟ้านิวเคลียร์ เป็นโรงไฟฟ้าพลังความร้อนแบบหนึ่งที่ใช้แหล่งพลังงานความร้อนจากเครื่องปฏิกรณ์ที่ใช้พลังงานนิวเคลียร์ในการผลิตไอน้ำแรงดันสูงจ่ายให้กับกังหันไอน้ำ กังหันไอน้ำจะไปหมุนเครื่องกำเนิดไฟฟ้าผลิตเป็นกระแสไฟฟ้าออกมา โดยเครื่องปฏิกรณ์ที่ใช้ในการผลิตพลังงานนิวเคลียร์ สามารถแบ่งออกเป็น 2 ประเภทได้แก่ เครื่องปฏิกรณ์นิวเคลียร์แบบวิจัย (อังกฤษ: Research Reactor) ที่ใช้ประโยชน์จากนิวตรอนฟลักซ์ในการวิจัย และระบายความร้อนที่เกิดขึ้นออกสู่ชั้นบรรยากาศ และเครื่องปฏิกรณ์นิวเคลียร์กำลัง (อังกฤษ: Power Reactor) ที่ใช้พลังความร้อนที่เกิดขึ้นเปลี่ยนเป็นพลังงานไฟฟ้า ซึ่งเครื่องปฏิกรณ์นิวเคลียร์กำลัง มีขนาดใหญ่โตกว่าเครื่องปฏิกรณ์นิวเคลียร์วิจัยเป็นอย่างมาก

โรงไฟฟ้านิวเคลียร์เป็นโรงไฟฟ้าชนิด Baseload คือผลิตพลังงานคงที่ โดยไม่ขึ้นกับกำลังงานที่ต้องการใช้จริง เนื่องจากต้นทุนเชื้อเพลิงมีราคาถูกเมื่อเทียบกับค่าใช้จ่ายอื่นๆในการผลิต [3](ในขณะที่โรงไฟฟ้าที่ใช้การต้มน้ำด้วยแหล่งพลังงานอื่น สามารถลดการจ่ายไฟลงครึ่งหนึ่งได้เวลากลางคืนเพื่อประหยัดค่าใช้จ่ายเชื้อเพลิง) กำลังไฟที่หน่วยผลิตจ่ายได้นั้นอาจมีตั้งแต่ 40 เมกะวัตต์ จนถึงเกือบ 2000 เมกะวัตต์ ในปัจจุบันหน่วยผลิตที่สร้างกันมีขอบเขตอยู่ที่ 600-1200 เมกะวัตต์

ข้อมูลของ IAEA ณ วันที่ 23 เมษายน ค.ศ. 2014 มีเครื่องปฏิกรณ์ทำงานอยู่ 435 เครื่อง[4]ใน 31 ประเทศทั่วโลก[5] รวมแล้วผลิตกำลังไฟฟ้าเป็น 1 ใน 6 ส่วนของพลังงานไฟฟ้าทั้งหมดในโลก โดยสหรัฐอเมริกามีจำนวนโรงไฟฟ้านิวเคลียร์ มากที่สุด ตามมาด้วย ฝรั่งเศส[6]

เนื้อหา

ประวัติ[แก้]

ห้องควบคุมที่โรงไฟฟ้าพลังงานนิวเคลียร์สหรัฐ
สำหรับประวัติเพิ่มเติม, โปรดดูที่เครื่องปฏิกรณ์นิวเคลียร์, พลังงานนิวเคลียร์ และนิวเคลียร์ฟิชชั่น

ไฟฟ้าถูกสร้างขึ้นโดยเครื่องปฏิกรณ์นิวเคลียร์เป็นครั้งแรกในวันที่ 3 กันยายน 1948 ด้วย'เครื่องปฏิกรณ์แกรไฟท์ X-10' ใน Oak Ridge รัฐเทนเนสซี ประเทศสหรัฐอเมริกาและเป็นโรงไฟฟ้านิวเคลียร์เครื่องแรกที่จะให้กำลังไฟกับหลอดไฟดวงหนึ่ง[7][8][9]. การทดลองครั้งที่สองมีขนาดใหญ่กว่าเกิดขึ้นในวันที่ 20 ธันวาคม 1951 ที่สถานีทดลอง EBR-I ใกล้ Arco, รัฐไอดาโฮสหรัฐอเมริกา และเมื่อวันที่ 27 มิถุนายน 1954 โรงไฟฟ้านิวเคลียร์แห่งแรกของโลกที่ผลิตไฟฟ้าสำหรับกริด (ไฟฟ้า) เริ่มดำเนินการที่เมือง Obninsk สหภาพโซเวียต[10]. สถานีไฟฟ้าเต็มรูปแบบแห่งแรกของโลกคือที่คาลเดอฮอลล์ในอังกฤษเปิดเมื่อวันที่ 17 ตุลาคม 1956[11].

ระบบ[แก้]

แผนผังสำหรับเครื่องปฏิกรณ์แบบน้ำเดือด (BWR)
เครื่องปฏิกรณ์แบบน้ำแรงดันสูง (PWR)
ส่วนนี้ได้รับการแปลจากวิกิพีเดียภาษาเยอรมันเมื่อเร็ว ๆ นี้

การแปลงให้เป็นพลังงานไฟฟ้าเกิดขึ้นทางอ้อม, เช่นเดียวกับในโรงไฟฟ้าพลังความร้อนธรรมดาทั่วไป. ความร้อนเกิดจากปฏิกิริยาฟิชชันในเครื่องปฏิกรณ์นิวเคลียร์ (เครื่องปฏิกรณ์น้ำเบา). ไอของน้ำ (ไอน้ำ) ถูกผลิตขึ้นโดยตรงหรือโดยอ้อม. จากนั้น ไอน้ำแรงดันสูงมักจะจ่ายให้กับกังหันไอน้ในหลายขั้นตอน. กังหันไอน้ำในโรงไฟฟ้านิวเคลียร์ของประเทศตะวันตกมักอยู่ในหมู่กังหันไอน้ำที่ใหญ่ที่สุดเท่าที่เคยสร้าง. หลังจากผ่านกังหันไอน้ำ, ไอน้ำมีการขยายตัวและบางส่วนก็ควบแน่น, ไอน้ำที่เหลือจะควบแน่นในคอนเดนเซอร์. คอนเดนเซอร์เป็นตัวแลกเปลี่ยนความร้อนซึ่งจะเชื่อมต่อกับฝั่งด้านรองเช่นแม่น้ำหรือหอหล่อเย็น. จากนั้น น้ำจะถูกสูบกลับเข้ามาในเครื่องปฏิกรณ์นิวเคลียร์และวงจรก็เริ่มต้นอีกครั้ง. วัฏจักรของน้ำกับไอเป็นไปตามวงจรของ "Rankine cycle"

เครื่องปฏิกรณ์นิวเคลียร์[แก้]

บทความหลัก: เครื่องปฏิกรณ์นิวเคลียร์

เครื่องปฏิกรณ์นิวเคลียร์เป็นอุปกรณ์ที่จะเริ่มต้นและควบคุมปฏิกิริยาลูกโซ่นิวเคลียร์ที่ยั่งยืน. การใช้งานที่พบมากที่สุดของเครื่องปฏิกรณ์นิวเคลียร์คือใช้ในการผลิตพลังงานไฟฟ้าและการขับเคลื่อนของเรือ.

เครื่องปฏิกรณ์ Pingas เป็นหัวใจของโรงงาน. ในส่วนกลางของมัน ความร้อนของแกนเครื่องปฏิกรณ์ถูกสร้างขึ้นโดยปฏิกิริยานิวเคลียร์ที่มีการควบคุม. ด้วยความร้อนนี้ ตัวหล่อเย็นถูกทำให้ร้อนขณะที่มันถูกสูบผ่านเครื่องปฏิกรณ์และนี่เองเป็นการดึงเอาพลังงานจากเครื่องปฏิกรณ์. ความร้อนจากปฏิกิริยานิวเคลียร์ฟิชชั่นถูกใช้ในการสร้างไอน้ำซึ่งจะไหลผ่านกังหันไอน้ำที่จะส่งกำลังไปที่ใบพัดของเรือหรือไปหมุนเครื่องกำเนิดไฟฟ้า

เนื่องจากปฏิกริยานิวเคลียร์ฟิชชั่นสร้างกัมมันตภาพรังสี, แกนของเครื่องปฏิกรณ์จะถูกล้อมรอบด้วยโล่ป้องกัน. ตัวเก็บกักนี้จะดูดซับรังสีและป้องกันไม่ให้วัสดุกัมมันตรังสีถูกปล่อยออกมาสู่สิ่งแวดล้อม. นอกจากนี้เครื่องปฏิกรณ์จำนวนมากมีการติดตั้งโดมคอนกรีตเพื่อป้องกันเครื่องปฏิกรณ์ไม่ให้เกิดการบาดเจ็บภายในและไม่ให้เกิดผลกระทบกับภายนอก[12].

ในโรงไฟฟ้านิวเคลียร์ ชนิดของเครื่องปฏิกรณ์, เชื้อเพลิงนิวเคลียร์, วงจรความเย็นและตัวหน่วงปฏิกริยาจะใช้แตกต่างกัน

กังหันไอน้ำ[แก้]

บทความหลัก: กังหันไอน้ำ

วัตถุประสงค์ของกังหันไอน้ำคือการแปลงความร้อนที่มีอยู่ในไอน้ำเป็นพลังงานกล. เครื่องยนต์ที่ประกอบขึ้นเป็นกังหันไอน้ำมักจะถูกแยกออกจากโครงสร้างอาคารเครื่องปฏิกรณ์หลัก. มันจะถูกวางให้อยุ่ในตำแหน่งที่จะป้องกันไม่ให้เศษซากจากการเสียหายของกังหันหากเกิดขึ้นในระหว่างการดำเนินงานจากการบินว่อนไปกระทบเครื่องปฏิกรณ์[ต้องการอ้างอิง].

ในกรณีของเครื่องปฏิกรณ์น้ำแรงดันสูง กังหันไอน้ำจะถูกแยกออกจากระบบนิวเคลียร์. เพื่อที่จะตรวจสอบการรั่วไหลในเครื่องกำเนิดไอน้ำซึ่งก็คือทางเดินของน้ำกัมมันตภาพรังสีในช่วงเริ่มต้น, มาตรวัดปฏิกริยาจะถูกติดตั้งเพื่อตามรอยทางออกของไอน้ำจากเครื่องกำเนิดไอน้ำ. ในทางตรงกันข้าม เครื่องปฏิกรณ์น้ำเดือดจะส่งน้ำกัมมันตรังสีผ่านกังหันไอน้ำเพื่อที่ว่ากังหันจะถูกเก็บไว้เป็นส่วนหนึ่งของพื้นที่ควบคุมของโรงไฟฟ้านิวเคลียร์

เครื่องกำเนิดไฟฟ้า[แก้]

บทความหลัก: เครื่องกำเนิดไฟฟ้า

เครื่องกำเนิดไฟฟ้าแปลงพลังงานจลน์ที่เกิดจากกังหันให้เป็นพลังงานไฟฟ้า. เครื่องกำเนิดไฟฟ้า AC แบบซิงโครนัสที่มีอัตรากำลังสูงถูกนำมาใช้

ระบบหล่อเย็น[แก้]

ระบบหล่อเย็นจะระบายความร้อนออกจากแกนเครื่องปฏิกรณ์และลำเลียงมันไปยังอีกพื้นที่หนึ่งของโรงงาน, ในที่ซึ่งพลังงานความร้อนสามารถถูกนำไปใช้ประโยชน์ในการผลิตไฟฟ้าหรือทำงานที่มีประโยชน์อื่นๆ. โดยปกติตัวหล่อเย็นที่ร้อน(อังกฤษ: hot coolant)จะถูกใช้เป็นแหล่งจ่ายความร้อนสำหรับหม้อต้มน้ำ, และแรงดันไอน้ำจากหม้อต้มน้ำนั้นจะเป็นกำลังขับกังหันไอน้ำหนึ่งเครื่องหรือมากกว่าที่จะไปหมุนเครื่องกำเนิดไฟฟ้า[13]

วาล์วนิรภัย[แก้]

ในกรณีฉุกเฉิน, วาล์วนิรภัยสามารถนำมาใช้เพื่อป้องกันไม่ให้ท่อหรือเครื่องปฏิกรณ์ระเบิด. วาล์วทั้งหลายได้รับการออกแบบเพื่อให้พวกมันสามารถปรับเปลี่ยนอัตราการไหลให้มีความดันเพิ่มขึ้นทีละน้อย. ในกรณีของ BWR, ไอน้ำถูกป้อนเข้าไปในห้องบีบอัดโดยตรงและควบแน่นในนั้น. หลายห้องในตัวแลกเปลี่ยนความร้อน(อังกฤษ: heat exchanger)มีการเชื่อมต่อกับวงจรหล่อเย็นระยะกลาง

ปั๊มจ่ายน้ำ[แก้]

ระดับน้ำในเครื่องกำเนิดไอน้ำและเครื่องปฏิกรณ์นิวเคลียร์จะถูกควบคุมโดยใช้ระบบจ่ายน้ำ. ปั๊มจ่ายน้ำมีหน้าที่ในการนำน้ำจากระบบควบแน่น, เพิ่มความดันและบังคับให้มันเข้าไปในเครื่องกำเนิดไอน้ำ (ในกรณีของเครื่องปฏิกรณ์น้ำแรงดันสูง) หรือป้อนโดยตรงเข้าไปในเครื่องปฏิกรณ์ (สำหรับเครื่องปฏิกรณ์น้ำเดือด)

แหล่งจ่ายไฟฉุกเฉิน[แก้]

โรงไฟฟ้านิวเคลียร์ส่วนใหญ่ต้องการแหล่งจ่ายไฟที่มีหม้อแปลงไฟฟ้าบริการจากสถานีจ่ายด้านนอกที่แตกต่างกันสองแห่งและอยู่ภายในพื้นที่ที่เป็น switchyard ของโรงงานที่อยู่ห่างกันพอสมควรและสามารถรับกระแสไฟฟ้าจากสายส่งหลายสาย. นอกจากนี้ในบางโรงไฟฟ้านิวเคลียร์, เครื่องกำเนิดไฟฟ้าแบบกังหันสามารถให้กำลังไฟกับโหลดบ้านของโรงงานในขณะที่โรงงานต่ออยู่กับหม้อแปลงบริการของสถานีซึ่งต่อพ่วงไฟฟ้ามาจากบัสบาร์เอาท์พุทของเครื่องกำเนิดไฟฟ้าก่อนที่จะถึง step-up transformer (โรงงานเหล่านี้ยังมีหม้อแปลงไฟฟ้าบริการของสถานีที่รับพลังงานนอกสถานที่โดยตรงจาก switchyard). แม้จะมีความซ้ำซ้อนของแหล่งพลังงานสองแหล่ง, การสูญเสียพลังงานนอกสถานที่โดยรวมยังคงเป็นไปได้. โรงไฟฟ้านิวเคลียร์มีการติดตั้งระบบไฟฉุกเฉินเพื่อรักษาความปลอดภัยในกรณีที่มีการปิดหน่วยและการขาดหายของพลังงานนอกสถานที่. แบตเตอรี่ให้พลังงานสำรองกับเครื่องมือ, ระบบการควบคุมและวาล์วทั้งหลาย. เครื่องกำเนิดไฟฟ้าดีเซลฉุกเฉินให้ไฟ AC โดยตรงในการชาร์จแบตเตอรี่และเพื่อให้กำลังไฟกับระบบที่ต้องใช้ไฟ AC เช่นมอเตอร์ที่ขับเคลื่อนปั๊ม. เครื่องกำเนิดไฟฟ้าดีเซลฉุกเฉินไม่ได้กำลังไฟให้กับทุกระบบในโรงงาน, เฉพาะระบบที่จำเป็นต้องปิดเครื่องปฏิกรณ์ลงอย่างปลอดภัย, เอาความร้อนจากการสลายตัวของเครื่องปฏิกรณ์ออก, ระบายความร้อนที่แกนในกรณีฉุกเฉิน, และในโรงงานบางชนิดใช้สำหรับระบายความร้อนในบ่อเชื้อเพลิงใช้แล้ว. ปั๊มผลิตกระแสไฟฟ้าขนาดใหญ่เช่นปั๊มจ่ายน้ำหลัก, คอนเดนเสท, น้ำหมุนเวียน, และ (ในเครื่องปฏิกรณ์น้ำแรงดันสูง) ปั๊มตัวหล่อเย็นของเตาปฏิกรณ์ไม่ได้รับการสำรองจากเครื่องยนต์ดีเซล.

บุคคลในโรงไฟฟ้านิวเคลียร์[แก้]

  • วิศวกรนิวเคลียร์
  • ผู้ใช้งานเครื่องปฏิกรณ์
  • นักฟิสิกส์สุขภาพ
  • บุคลากรทีมที่ตอบสนองยามฉุกเฉิน
  • ผู้ตรวจการประจำของคณะกรรมการกำกับกิจการพลังงานนิวเคลียร์

ในประเทศสหรัฐอเมริกาและแคนาดา, คนงานยกเว้นผู้บริหารจัดการ, บุคคลากรมืออาชีพ (เช่นวิศวกร) และเจ้าหน้าที่รักษาความปลอดภัยมีแนวโน้มที่จะเป็นสมาชิกของ'ภราดรภาพของคนงานไฟฟ้านานาชาติ'(อังกฤษ: International Brotherhood of Electrical Workers (IBEW)) หรือ'สหภาพคนงานยูทิลิตี้แห่งอเมริกา'(อังกฤษ: Utility Workers Union of America (UWUA))อย่างใดอย่างหนึ่ง หรือหนึ่งในสหภาพของธุรกิจการค้าต่างๆและสหภาพแรงงานที่เป็นตัวแทนของช่างเครื่อง, แรงงาน, ผู้สร้างหม้อต้มน้ำ, คนงานโรงสี, คนงานเหล็ก, ฯลฯ

เศรษฐศาสตร์[แก้]

สถานีผลิตพลังงานนิวเคลียร์ Bruce, สถานียูทิลิตี้พลังงานนิวเคลียร์ที่ใหญ่ที่สุดในโลก[14]

บทความหลัก: เศรษฐศาสตร์ของโรงไฟฟ้านิวเคลียร์ใหม่

เศรษฐศาสตร์ของโรงไฟฟ้านิวเคลียร์ใหม่เป็นเรื่องความขัดแย้ง, และการลงทุนหลายพันล้านดอลลาร์นั่งอยู่บนทางเลือกของแหล่งพลังงาน. โรงไฟฟ้านิวเคลียร์มักจะมีค่าใช้จ่ายในการลงทุนสูง, แต่ค่าใช้จ่ายด้านเชื้อเพลิงโดยตรงต่ำ, กับค่าใช้จ่ายของการสกัดเชื้อเพลิง, กระบวนการ, การใช้งานและค่าใช้จ่ายในการเก็บรักษาเชื้อเพลิงใช้แล้ว. ดังนั้น การเปรียบเทียบกับวิธีการผลิตไฟฟ้าอื่นๆจะขึ้นอยู่กับสมมติฐานเกี่ยวกับระยะเวลาการก่อสร้างและการจัดหาเงินลงทุนสำหรับโรงไฟฟ้านิวเคลียร์. การประมาณการค่าใช้จ่ายจะต้องนำค่าใช้จ่ายในการรื้อถอนและการเก็บรักษากากนิวเคลียร์หรือค่าใช้จ่ายโรงงานรีไซเคิลเข้ามาคิดด้วยถ้าสร้างในสหรัฐอเมริกาเนื่องจาก'พระราชบัญญัติด้านราคา Anderson'. กับความคาดหวังว่าทั้งหมดของเชื้อเพลิงนิวเคลียร์ใช้แล้ว/"กากนิวเคลียร์"อาจมีศักยภาพในการนำกลับมาใช้ใหม่โดยใช้เครื่องปฏิกรณ์ในอนาคต,เครื่องปฏิกรณ์ generation IV, ที่กำลังออกแบบมาเพื่อปิดวัฏจักรเชื้อเพลิงนิวเคลียร์ได้อย่างสมบูรณ์.

อีกด้านหนึ่ง, ค่าใช้จ่ายในการก่อสร้าง, หรือทุนอื่นๆนอกจากนี้, มาตรการเพื่อลดภาวะโลกร้อนเช่นภาษีคาร์บอนหรือการซื้อขายการปลดปล่อยคาร์บอน, ยิ่งเพิ่มมูลค่าทางเศรษฐศาสตร์ของพลังงานนิวเคลียร์. ประสิทธิภาพที่ก้าวหน้าถูกคาดหวังว่าจะประสบความสำเร็จผ่านการออกแบบเครื่องปฏิกรณ์ขั้นสูงยิ่งขึ้น, เตาปฏิกรณ์นิวเคลียร์ Generation III สัญญาว่าจะเพิ่มประสิทธิภาพด้านเชื้อเพลิงมากขึ้นอย่างน้อย 17%, และมีค่าใช้จ่ายเงินทุนลดลง, ในขณะที่เครื่องปฏิกรณ์ Generation IV ในอนาคตสัญญาว่าจะมีประสิทธิภาพด้านเชื้อเพลิงมากขึ้น 10,000-30,000% และไม่เกิดกากนิวเคลียร์

ในยุโรปตะวันออก, หลายโครงการที่มีการดำเนินงานยืดเยื้อยาวนานกำลังดิ้นรนเพื่อหาเงิน, ที่โดดเด่นคือ Belene ในบัลแกเรียและการเพิ่มเครื่องปฏิกรณ์ที่ Cernavodă ในโรมาเนีย, และผู้สนับสนุนที่มีศักยภาพบางคนมีการถอนตัว[15]. ในขณะที่มีแก๊สราคาถูกให้ใช้ได้และอุปทานในอนาคตค่อนข้างมั่นคง, สิ่งนี้ยังส่อเค้าเป็นปัญหาสำคัญสำหรับโครงการนิวเคลียร์[15].

การวิเคราะห์ทางเศรษฐศาสตร์ของพลังงานนิวเคลียร์ต้องคำนึงถึงผู้ที่แบกความเสี่ยงของความไม่แน่นอนในอนาคต. ในวันนี้ ทั้งหมดของการดำเนินงานโรงไฟฟ้านิวเคลียร์ได้รับการพัฒนาโดยการผูกขาดที่รัฐเป็นเจ้าของหรือรัฐควบคุมยูทิลิตี้[16] ในขณะที่หลายความเสี่ยงที่เกี่ยวข้องกับค่าใช้จ่ายในการก่อสร้าง, ผลการดำเนินงาน, ราคาเชื่อเพลิง, และปัจจัยอื่นๆ ถูกแบกโดยผู้บริโภคแทนที่จะเป็นผู้ให้บริการ. ขณะนี้หลายประเทศได้เปิดเสรีตลาดไฟฟ้าโดยที่ความเสี่ยงเหล่านี้, และความเสี่ยงของคู่แข่งราคาถูกกว่าที่เกิดขึ้นก่อนที่ค่าใช้จ่ายเงินทุนจะได้รับการกู้คืน, จะตกเป็นภาระของผู้ผลิตและผู้ประกอบการโรงงานมากกว่าผู้บริโภค, ซึ่งนำไปสู่​​การประเมินผลที่แตกต่างกันอย่างมีนัยสำคัญของเศรษฐกิจของพลังงานนิวเคลียร์ใหม่[17].

หลังจากอุบัติเหตุนิวเคลียร์ Fukushima I เมื่อปี 2011, ค่าใช้จ่ายมีแนวโน้มที่จะสูงขึ้นสำหรับการดำเนินงานของโรงไฟฟ้านิวเคลียร์ในปัจจุบันและโรงไฟฟ้านิวเคลียร์ใหม่, เนื่องจากกฏระเบียบที่เพิ่มขึ้นสำหรับการจัดการเชื้อเพลิงใช้แล้วในสถานที่ตั้งและภัยคุกคามพื้นฐานในการออกแบบที่ถูกยกระดับให้สูงขึ้น[18]. อย่างไรก็ตาม การออกแบบหลายอย่าง, เช่นที่อยู่ระหว่างการก่อสร้าง AP1000 ขณะนี้, ใช้ระบบหล่อเย็นแบบ passive nuclear safety, ซึ่งแตกต่างจากระบบของ Fukushima I ซึ่งต้องใช้ระบบหล่อเย็นแบบ active, ระบบ passive นี้จะช่วยลดความจำเป็นอย่างมากที่จะต้องใช้จ่ายมากขึ้นในการใช้อุปกรณ์สำรองเพื่อความปลอดภัยที่ซ้ำซ้อนกัน

ความปลอดภัยและอุบัติเหตุ[แก้]

มีแลกเปลี่ยนที่จะทำระหว่างความปลอดภัย, คุณสมบัติทางเศรษฐกิจและทางเทคนิคของการออกแบบเครื่องปฏิกรณ์ที่แตกต่างกันสำหรับการใช้งานโดยเฉพาะ. ในอดีตการตัดสินใจเหล่านี้มักจะถูกทำในภาคเอกชนโดยนักวิทยาศาสตร์, ผู้กำกับดูแลและวิศวกร[ต้องการอ้างอิง], แต่สิ่งนี้อาจได้รับการพิจารณาว่าเป็นปัญหา, และตั้งแต่เชอร์โนบิลและเกาะทรีไมล์, หลายคนที่เกี่ยวข้องตอนนี้ได้พิจารณาถึงความยินยอมในการแจ้งล่วงหน้าและคุณธรรมที่จะเป็นข้อพิจารณาเบื้องต้นอย่างอิสระ[19].

ในหนังสือของเขา, "อุบัติเหตุปกติ", ชาร์ลส์ Perrow กล่าวว่าความล้มเหลวหลายครั้งและที่ไม่ได้คาดคิดถูกสร้างขึ้นเข้ามาในความซับซ้อนของสังคมและระบบเครื่องปฏิกรณ์นิวเคลียร์ที่มัดกันแน่น. อุบัติเหตุดังกล่าวไม่สามารถหลีกเลี่ยงได้และไม่ได้ถูกออกแบบเอาไว้[20]. ทีมสหวิทยาการจากเอ็มไอทีได้มีการประมาณการว่าถ้าให้การเจริญเติบโตที่คาดไว้ของพลังงานนิวเคลียร์จากปี 2005 - 2055, อย่างน้อยสี่อุบัติเหตุนิวเคลียร์ร้ายแรงคาดว่าจะเกิดขึ้นในช่วงนั้น[21][22]. อย่างไรก็ตามการศึกษาของเอ็มไอทีไม่ได้คำนึงถึงการปรับปรุงหลายอย่างในด้านความปลอดภัยตั้งแต่ปี 1970[23][24]. นับถึงวันนี้ ได้มีอุบัติเหตุร้ายแรง (แกนเสียหาย)เกิดขึ้น 5 ครั้งในโลกตั้งแต่ปี 1970 (หนึ่งที่เกาะสามไมล์ไอส์แลนด์ในปี 1979; สองที่เชอร์โนบิลในปี 1986 และสามที่ฟูกูชิม่า-Daiichi ในปี 2011), สอดคล้องกับจุดเริ่มต้นของการดำเนินงานของเครื่องปฏิกรณ์ generation II. สิ่งนี้นำไปสู่​​ค่าเฉลี่ยของอุบัติเหตุร้ายแรงที่เกิดขึ้นหนึ่งครั้งทุกๆแปดปีทั่วโลก[25].

ความซับซ้อน[แก้]

โรงไฟฟ้านิวเคลียร์คือบางส่วนของระบบพลังงานที่ทันสมัยและซับซ้อนที่สุดเท่าที่เคยออกแบบ[26]. ระบบที่ซับซ้อนใดๆ, ไม่ว่าจะถูกออกแบบและถูกสรรสร้างได้ดีสักเพียงไร, ก็ไม่สามารถจะบอกได้ว่ามันจะไม่มีความล้มเหลว[25]. นักข่าวและนักประพันธ์อาวุโส สเตฟานี Cooke แย้งว่า:

ตัวเครื่องปฏิกรณ์เองเป็นเครื่องที่ซับซ้อนอย่างยิ่งที่มีหลายสิ่งที่อาจผิดพลาดได้ทุกเมื่อ. เมื่อเกิดขึ้นที่เกาะทรีไมล์ในปี 1979, ความผิดพลาดอื่นๆในโลกนิวเคลียร์ก็เริ่มขึ้น. ความผิดพลาดอันหนึ่งก็นำไปสู่​​ความผิดพลาดอีกอันหนึ่ง, แล้วเกิดขึ้นต่อๆกันไปเรื่อยๆ, จนกระทั่งแกนของตัวเครื่องปฏิกรณ์เองเริ่มที่จะละลาย, และแม้แต่วิศวกรนิวเคลียร์ที่ผ่านการฝึกอบรมมากที่สุดของโลกก็ไม่รู้วิธีการตอบสนอง. อุบัติเหตุที่เกิดขึ้นเผยให้เห็นข้อบกพร่องอย่างร้ายแรงในระบบที่ถูกสร้างขึ้นมาให้ปกป้องสุขภาพและความปลอดภัยของประชาชน[27].

อุบัติเหตุที่เกาะทรีไมล์ในปี 1979 สร้างแรงบันดาลใจให้กับ Perrow ในหนังสือ'อุบัติเหตุปกติ', ในที่ซึ่งอุบัติเหตุนิวเคลียร์ได้เกิดขึ้น, เป็นผลมาจากการทำงานร่วมกันที่ไม่คาดคิดของความล้มเหลวหลายอย่างของระบบที่ซับซ้อน. อุบัติเหตุครั้งนั้นเป็นตัวอย่างหนึ่งของการเกิดอุบัติเหตุตามปกติเพราะมันเป็นสิ่งที่ "ที่ไม่คาดคิด, เข้าใจยาก, ที่ไม่สามารถควบคุมได้และหลีกเลี่ยงไม่ได้"[28].

Perrow สรุปว่าความล้มเหลวที่เกาะทรีไมล์เป็นผลมาจากความซับซ้อนอันยิ่งใหญ่ของระบบ. เขาตระหนักว่า ระบบความเสี่ยงสูงที่ทันสมัย​​เช่นนั้นมีแนวโน้มที่จะล้มเหลวไม่ว่าพวกมันจะได้รับการจัดการดีอย่างไรก็ตาม. มันหลีกเลี่ยงไม่ได้ที่พวกเขาในที่สุดก็จะได้รับสิ่งที่เขาเรียก 'อุบัติเหตุปกติ'. ดังนั้น เขาแนะนำว่าเราอาจจะคิดออกแบบใหม่จะดีกว่า, หรือถ้าเป็นไปไม่ได้, ก็ละทิ้งเทคโนโลยีดังกล่าวไปทั้งหมด[29] .

ปัญหาพื้นฐานที่เอื้อต่อความซับซ้อนของระบบไฟฟ้านิวเคลียร์คืออายุการใช้งานที่ยาวนานมากๆของมัน. ระยะเวลาตั้งแต่เริ่มต้นของการก่อสร้างสถานีพลังงานนิวเคลียร์เชิงพาณิชย์จนถึงการกำจัดที่ปลอดภัยของกากกัมมันตรังสีครั้งสุดท้ายของมันอาจกินเวลาถึง 100-150 ปี[26]

โหมดความล้มเหลวของโรงไฟฟ้านิวเคลียร์[แก้]

มีความกังวลว่าการรวมกันของข้อผิดพลาดของมนุษย์และของเครื่องกลที่นิวเคลียร์ยูทิลิตื้อาจทำให้เกิดอันตรายที่สำคัญกับผู้คนและสิ่งแวดล้อม[30]:

การดำเนินงานกับเครื่องปฏิกรณ์นิวเคลียร์ประกอบด้วยปริมาณขนาดใหญ่ของผลิตภัณฑ์ฟิชชันที่ปนเปื้อนกัมมันตรังสีซึ่ง, ถ้ากระจายออกไป, สามารถก่อให้เกิดอันตรายจากรังสีโดยตรง, ปนเปื้อนในดินและพืชผัก, และถูกบริโภคโดยมนุษย์และสัตว์. การสัมผัสของมนุษย์ในระดับที่สูงพอสามารถทำให้เกิดทั้งการเจ็บป่วยและความตายในระยะสั้นและการเสียชีวิตในระยะยาวจากโรคมะเร็งและโรคอื่นๆ[31].

มันเป็นไปไม่ได้สำหรับเครื่องปฏิกรณ์นิวเคลียร์เชิงพาณิชย์ที่จะระเบิดเหมือนกับระเบิดนิวเคลียร์เนื่องจากเชื้อเพลิงที่ไม่เคยมีสมรรถนะเพียงพอสำหรับทำให้เกิดขึ้นอย่างนั้น[32].

เครื่องปฏิกรณ์นิวเคลียร์สามารถล้มเหลวได้ในหลายวิธี. ความไม่แน่นอนของวัสดุนิวเคลียร์อาจสร้างพฤติกรรมที่ไม่คาดคิด, มันอาจส่งผลให้พลังงานกระจัดกระจายออกนอกลู่นอกทางไม่สามารถควบคุมได้. ปกติ ระบบหล่อเย็นในเตาปฏิกรณ์ถุกออกแบบเพื่อให้สามารถที่จะจัดการกับความร้อนส่วนเกินนี้; อย่างไรก็ตาม เตาปฏิกรณ์ยังอาจประสบอุบัติเหตุจากการสูญเสียของตัวหล่อเย็น, ทำให้เชื้อเพลิงละลายหรือทำให้ถังบรรจุเชื้อเพลิงร้อนมากเกินไปจนละลาย. เหตุการณ์นี้เรียกว่านิวเคลียร์หลอมละลาย(อังกฤษ: nuclear meltdown).

หลังจากปิดตัวลง, บางเวลาเครื่องปฏิกรณ์ยังคงต้องการพลังงานจากภายนอกเพื่อให้พลังงานกับระบบหล่อเย็น. โดยปกติพลังงานนี้ถูกจัดให้โดยกริด (ไฟฟ้า) ที่โรงงานถูกเชื่อมต่อด้วย, หรือโดยเครื่องกำเนิดไฟฟ้าดีเซลฉุกเฉิน. ความล้มเหลวที่จะให้พลังงานสำหรับระบบหล่อเย็น, อย่างที่เกิดขึ้นใน Fukushima I, สามารถก่อให้เกิดอุบัติเหตุร้ายแรงได้.

กฎความปลอดภัยนิวเคลียร์ในสหรัฐอเมริกา "ไม่ให้น้ำหนักเพียงพอกับความเสี่ยงของเหตุการณ์สักครั้งเดียวที่จะทำการปลดกระแสไฟฟ้าออกจากกริดและจากเครื่องกำเนิดไฟฟ้าฉุกเฉิน, อย่างที่แผ่นดินไหวและสึนามิได้ทำเมื่อเร็วๆนี้ในประเทศญี่ปุ่น" เจ้าหน้าที่กำกับกิจการพลังงานกล่าวในเดือนมิถุนายน 2011[33].

ภาวะเสี่ยงสูงของโรงไฟฟ้านิวเคลียร์ที่จะถูกโจมตี[แก้]

เครื่องปฏิกรณ์นิวเคลียร์กลายเป็นเป้าหมายที่นิยมในช่วงความขัดแย้งทางทหารและ, ตลอดสามทศวรรษที่ผ่านมา, ได้ถูกโจมตีซ้ำแล้วซ้ำอีกในระหว่างการโจมตีทางอากาศ, การเข้าครอบครอง, การรุกรานและการรณรงค์[34]:

  • ในเดือนกันยายนปี 1980, อิหร่านโจมตีด้วยระเบิดที่ศูนย์นิวเคลียร์ Al Tuwaitha ในอิรักในปฏิบัติการการ Operation Scorch Sword
  • ในเดือนมิถุนายนปี 1981, การโจมตีทางอากาศของอิสราเอลได้ทำลายสถานที่วิจัยนิวเคลียร์ Osirak ของอิรักอย่างสมบูรณ์
  • ระหว่างปี 1984 และปี 1987, อิรักโจมตีด้วยระเบิดที่โรงงานนิวเคลียร์ Bushehr ของอิหร่านหกครั้ง
  • วันที่ 8 มกราคม 1982, Umkhonto we Sizwe, ปีกติดอาวุธของ ANC, ได้โจมตีโรงไฟฟ้านิวเคลียร์ Koeberg ของแอฟริกาใต้ในขณะที่มันยังคงอยู่ระหว่างการก่อสร้าง
  • ในปี 1991 สหรัฐฯทิ้งระเบิดสามเครื่องปฏิกรณ์นิวเคลียร์และห้องนักบินตกแต่งในอิรัก
  • ในปี 1991 อิรักยิงขีปนาวุธสกั๊ดเข้าที่โรงไฟฟ้านิวเคลียร์ Dimona ของอิสราเอล
  • ในเดือนกันยายนปี 2007 อิสราเอลทิ้งระเบิดเข้าที่เครื่องปฏิกรณ์ของซีเรียที่อยู่ระหว่างการก่อสร้าง[34].

ในสหรัฐอเมริกา โรงงานจะถูกล้อมรอบด้วยรั้วสูงสองแถวซึ่งมีการเฝ้าดูด้วยระบบอิเล็กทรอนิกส์. บริเวณโรงงานมีการลาดตระเวนโดยยามติดอาวุธจำนวนมาก[35]. เกณฑ์"การออกแบบการคุกคามพื้นฐาน"ของ NRC สำหรับโรงงานจะถูกเก็บเป็นความลับและขนาดของแรงโจมตีที่โรงงานสามารถป้องกันได้ไม่เป็นที่รู้จัก. อย่างไรก็ตาม, เพื่อที่จะ scram (ปิดฉุกเฉิน) โรงงานจะใช้เวลาน้อยกว่า 5 วินาทีในขณะที่การรีสตาร์ทที่ไม่มีข้อจำกัดจะใช้เวลาหลายชั่วโมง, การขัดขวางการก่อการร้ายจะกระทำอย่างรุนแรงเพื่อสกัดเป้าหมายที่จะปล่อยกัมมันตภาพรังสี.

การโจมตีจากทางอากาศเป็นปัญหาที่ได้รับการเน้นตั้งแต่การโจมตี 11 กันยายนในสหรัฐอเมริกา, แต่ในปี 1972 นักจี้เครื่องบินสามคนเข้าควบคุมเที่ยวบินโดยสารภายในประเทศตามชายฝั่งตะวันออกของสหรัฐและขู่ว่าจะใช้เครื่องบินพุ่งเข้าชนโรงงานอาวุธนิวเคลียร์ของสหรัฐใน Oak Ridge รัฐเทนเนสซี. เครื่องบินได้เข้าใกล้ที่หมายห่างไป 8,000 ฟุตก่อนที่ความต้องการของนักจี้จะบรรลุ[36][37].

สิ่งกีดขวางที่สำคัญที่สุดในการป้องกันการปลดปล่อยกัมมันตภาพรังสีในกรณีที่มีการโจมตีด้วยอากาศยานที่โรงไฟฟ้านิวเคลียร์คืออาคารเก็บกักและโล่ขีปนาวุธของมัน. ประธาน NRC ปัจจุบันเดล ไคลน์ ได้กล่าวว่า "โรงไฟฟ้านิวเคลียร์จะมีโครงสร้างที่แข็งแกร่งโดยธรรมชาติ จากการศึกษาของเราแสดงให้เห็นการป้องกันที่เพียงพอในการโจมตีสมมุติโดยเครื่องบิน. NRC ยังได้ดำเนินการหลายอย่างที่จำเป็นเพื่อให้ผู้ประกอบการโรงไฟฟ้านิวเคลียร์มีความสามารถในการจัดการกับไฟไหม้หรือระเบิดขนาดใหญ่--ไม่ว่าสิ่งนั้นจะเกิดขึ้นจากอะไร"[38].

นอกจากนี้, ผู้สนับสนุนได้ชี้ไปที่การศึกษาขนาดใหญ่ที่ดำเนินการโดย'สถาบันวิจัยพลังงานไฟฟ้าแห่งสหรัฐอเมริกา'ที่ได้ทดสอบความทนทานของทั้งเครื่องปฏิกรณ์และสถานที่เก็บขยะเชื้อเพลิงและพบว่าพวกมันควรจะสามารถที่จะรองรับการโจมตีจากผู้ก่อการร้ายได้เมื่อเทียบกับการโจมตีของผู้ก่อการร้ายเมื่อวันที่ 11 กันยายนในสหรัฐอเมริกา. เชื้อเพลิงใช้แล้วปกติจะเก็บอยู่ภายใน"โซนป้องกัน"ของโรงงาน[39] หรือในถังขนส่งเชื้อเพลิงนิวเคลียร์; การขโมยมันเพื่อนำไปใช้เป็น "ระเบิดสกปรก" จะเป็นเรื่องยากมาก. การสัมผัสกับรังสีที่รุนแรงเกือบจะทำให้หมดสภาพหรือฆ่าใครก็ตามที่พยายามที่จะทำเช่นนั้นอย่างรวดเร็วและแน่นอน[40].

ทำเลที่ตั้งโรงงาน[แก้]

สถานีนิวเคลียร์ Fort Calhoun ที่ล้อมรอบด้วยแม่น้ำมิสซูรี่ที่ถูกน้ำท่วม เมื่อวันที่ 16 มิถุนายน 2011

ในหลายประเทศ, โรงงานมักจะตั้งอยู่บนชายฝั่งเพื่อให้เป็นแหล่งความพร้อมของน้ำหล่อเย็นสำหรับระบบน้ำบริการที่จำเป็น. ผลก็คือ การออกแบบต้องพิจารณาถึงความเสี่ยงของการเกิดน้ำท่วมและคลื่นสึนามิ. สภาพลังงานโลก (WEC) ระบุว่าความเสี่ยงจากภัยพิบัติกำลังเปลี่ยนแปลงและกำลังเพิ่มโอกาสของการเกิดภัยพิบัติเช่นแผ่นดินไหว, พายุไซโคลนเฮอริเคน, ไต้ฝุ่น, น้ำท่วม[41]. อุณหภูมิสูง, ระดับน้ำฝนต่ำและภัยแล้งที่รุนแรงอาจนำไปสู่​​การขาดแคลนน้ำจืด[41]. น้ำทะเลเป็นตัวกัดกร่อน, ดังนั้นการจัดหาพลังงานนิวเคลียร์มีโอกาสที่จะได้รับผลกระทบทางลบจากปัญหาการขาดแคลนน้ำจืด[41]. ปัญหาทั่วไปนี้อาจจะมีความสำคัญเพิ่มมากขึ้นเมื่อเวลาผ่านไป[41]. ความผิดพลาดในการคำนวณความเสี่ยงของการเกิดน้ำท่วมได้อย่างถูกต้องนำไปสู่เหตุบังเอิญ​​ระดับ 2 ของ 'สเกลเหตุการณ์นิวเคลียร์นานาชาติ'ระหว่าง'เหตุการณ์น้ำท่วมโรงไฟฟ้านิวเคลียร์ที่ Blayais ในปี 1999'[42], และในขณะที่น้ำท่วมเกิดจากแผ่นดินไหวและสึนามิที่ Tōhoku ในปี 2011 ที่นำไปสู่การเกิดอุบัติเหตุนิวเคลียร์ Fukushima I[43].

การออกแบบสำหรับโรงงานที่ตั้งอยู่ในโซนที่ยังมีการสั่นไหวของพื้นโลกอยู่ยังต้องพิจารณาความเสี่ยงของการเกิดแผ่นดินไหวและคลื่นสึนามิด้วย. ญี่ปุ่น, อินเดีย, จีนและสหรัฐอเมริกาอยู่ในกลุ่มประเทศที่มีโรงงานอยู่ในภูมิภาคที่มีแนวโน้มของแผ่นดินไหว. ความเสียหายที่เกิดกับโรงไฟฟ้านิวเคลียร์ Kashiwazaki-Kariwa ของญี่ปุ่นในปี 2007 ระหว่างการเกิดแผ่นดินไหวนอกชายฝั่ง Chuetsu[44][45] ได้ขีดเส้นใต้แสดงความกังวลโดยผู้เชี่ยวชาญด้านแผ่นดินไหวของประเทศญี่ปุ่นก่อนที่จะเกิดอุบัติเหตุฟูกูชิม่า, เป็นผู้ที่เตือนสิ่งที่เรียกว่า genpatsu-shinsai (ผลกระทบแบบโดมิโนของภัยพิบัติแผ่นดินไหวสำหรับโรงไฟฟ้านิวเคลียร์)[46].

เครื่องปฏิกรณ์หลายหน่วย[แก้]

ภัยพิบัตินิวเคลียร์ฟูกูชิม่าแสดงให้เห็นอันตรายหลายอย่างของการสร้างเครื่องปฏิกรณ์นิวเคลียร์หลายหน่วยติดตั้งอยู่ใกล้ๆกัน. ความใกล้ชิดแบบนี้ก่อให้เกิดอุบัติเหตุและปฏิกิริยาลูกโซ่คู่ขนานที่นำไปสู่​​การระเบิดของไฮโดรเจนสร้างความเสียหายต่ออาคารเครื่องปฏิกรณ์และน้ำที่ระบายจากบ่อเชื้อเพลิงใช้แล้วที่เปิดโล่ง--เป็นสถานการณ์หนึ่งที่อาจเป็นอันตรายมากกว่าการสูญเสียการหล่อเย็นของตัวเครื่องปฏิกรณ์เอง. เพราะการตั้งอยู่ใกล้กันของเครื่องปฏิกรณ์ทั้งหลาย, ผู้อำนวยการโรงงาน, มาซาโอะ โยชิดะ "จึงถูกวางในตำแหน่งของความพยายามที่จะรับมือพร้อมกันของการหลอมละลายของแกนของทั้งสามเครื่องปฏิกรณ์และของการสัมผัสกับบ่อเชื้อเพลิงทั้งสามหน่วย"[47].

ระบบความปลอดภัยนิวเคลียร์[แก้]

บทความหลัก: ระบบความปลอดภัยนิวเคลียร์

วัตถุประสงค์หลักสามอย่างของระบบความปลอดภัยนิวเคลียร์ตามที่กำหนดโดยคณะกรรมการกำกับกิจการพลังงานนิวเคลียร์คือการปิดเครื่องปฏิกรณ์, รักษามันอยู่ในสภาพปิด, และป้องกันไม่ให้ปล่อยสารกัมมันตรังสีในช่วงเหตุการณ์และอุบัติเหตุ[48]. วัตถุประสงค์เหล่านี้จะประสบความสำเร็จโดยใช้ความหลากหลายของอุปกรณ์, ซึ่งเป็นชิ้นส่วนของหลายระบบที่แตกต่างกันซึ่งแต่ละระบบก็ทำหน้าที่เฉพาะอย่าง.

กิจวัตรของการปล่อยสารกัมมันตรังสี[แก้]

สำหรับการอภิปรายที่ถกเถียงกันเกี่ยวกับผลกระทบต่อสุขภาพจากการปล่อยเป็นกิจวัตรตามปกติให้ดูการอภิปรายผลกระทบพลังงานนิวเคลียร์ต่อสุขภาพประชากรและคนงานที่อยู่ใกล้โรงไฟฟ้านิวเคลียร์และผลกระทบด้านสิ่งแวดล้อมของโรงไฟฟ้านิวเคลียร์ # ความเสี่ยงของโรคมะเร็ง

ในระหว่างปฏิบัติการเป็นกิจวัตรทุกๆวัน, การปล่อยสารกัมมันตรังสีจากโรงไฟฟ้านิวเคลียร์จะถูกกระทำข้างนอกของโรงงานแม้ว่าพวกมันจะมีในปริมาณที่เล็กน้อยมาก[49][50][51][52]. การปล่อยในแต่ละวันจะปล่อยไปในอากาศ, น้ำ, และดิน[50][51].

NRC กล่าวว่า "โรงไฟฟ้านิวเคลียร์บางครั้งก็ปล่อยก๊าซและของเหลวกัมมันตรังสีในสภาพแวดล้อมที่อยู่ภายใต้สภาวะที่ถูกควบคุมและถูกตรวจสอบเพื่อให้แน่ใจว่าพวกมันไม่ก่อให้เกิดอันตรายต่อประชาชนหรือสิ่งแวดล้อม"[53] และ "การปล่อยตามกิจวัตรในระหว่างการดำเนินงานปกติของโรงงานพลังงานนิวเคลียร์ไม่เคยมีพิษรุนแรง"[54].

อ้างถึงสหประชาชาติ (UNSCEAR), การดำเนินงานโรงไฟฟ้านิวเคลียร์ปกติที่รวมถึงวัฏจักรเชื้อเพลิงนิวเคลียร์จะมีการสัมผ้สกับรังสีในที่สาธารณะเฉลี่ยประจำปีจำนวน 0.0002 mSv (มิลลิ Sievert); มรดกของภัยพิบัติเชอร์โนเป็น 0.002 mSv/ปีเป็นค่าเฉลี่ยทั่วโลก ณ รายงานปี 2008; และค่าเฉลี่ยการสัมผ้สรังสีตามธรรมชาติที่ 2.4 mSv/ปี แม้ว่าบ่อยครั้งที่แตกต่างกันขึ้นอยู่กับสถานที่ตั้งของแต่ละบุคคลตั้งแต่ 1-13 mSv[55]

ความปลอดภัยอย่างสมบูรณ์ของตำนานญี่ปุ่น[แก้]

ในประเทศญี่ปุ่น หลายหน่วยงานภาครัฐและบริษัทนิวเคลียร์มีการส่งเสริมตำนานสาธารณะเรื่อง "ความปลอดภัยอย่างสมบูรณ์" ที่ผู้เสนอพลังงานนิวเคลียร์ได้ทนุถนอมตลอดหลายทศวรรษที่ผ่านมา[56]. คลื่นสึนามิที่ก่อให้เกิดภัยพิบัตินิวเคลียร์ฟูกูชิม่าน่าจะได้ถูกการคาดการณ์ไว้แล้วล่วงหน้า[57] และในเดือนมีนาคม 2012 นายกรัฐมนตรีโยชิฮิโกะ โนดะได้รับรู้ว่ารัฐบาลญี่ปุ่นได้ร่วมรับการตำหนิสำหรับภัยพิบัติที่ฟูกูชิม่า, โดยบอกว่าเจ้าหน้าที่มองไม่เห็น "ความไม่ถูกต้องทางเทคโนโลยี"ของประเทศ และทุกคนถลำลึกเกินไปกับ "ตำนานความปลอดภัย"[58].

ในประเทศญี่ปุ่น โครงการระดับชาติในการพัฒนาหุ่นยนต์สำหรับใช้ในกรณีฉุกเฉินนิวเคลียร์ถูกยกเลิกกลางคันเพราะมัน "ตีดังเกินไปของอันตรายที่อยู่ข้างใต้". ญี่ปุ่น, ควรจะเป็นพลังสำคัญในเรื่องหุ่นยนต์, ไม่ได้ส่งใครเลยเข้าไปในฟูกูชิม่าในช่วงภัยพิบัติ. ในทำนองเดียวกัน นิวเคลียร์คณะกรรมาธิการความปลอดภัยของญี่ปุ่นได้กำหนดแนวทางความปลอดภัยสำหรับโรงงานนิวเคลียร์น้ำเบาไว้ว่า "ศักยภาพสำหรับการสูญเสียพลังงานที่ขยายออกไปไม่จำเป็นต้องได้รับการพิจารณา". อย่างไรก็ตาม มันชัดเจนว่าเป็นเพราะการสูญเสียพลังงานที่ขยายออกไปให้กับปั๊มหล่อเย็นดังกล่าวที่ทำให้เกิด meltdown ที่โรงงานนิวเคลียร์ฟูกูชิม่า[59]

การโต้แย้ง[แก้]

โรงไฟฟ้านิวเคลียร์ในประเทศไทย[แก้]

คณะกรรมการนโยบายพลังงานแห่งชาติ ได้บรรจุในแผนพัฒนากำลังผลิตไฟฟ้า โดยโรงไฟฟ้านิวเคลียร์ กำหนดให้มีโรงไฟฟ้าในปี พ.ศ. 2563-2564 รวมกำลังผลิต 4,000 เมกะวัตต์ หรือจะเท่ากับปริมาณโรงไฟฟ้านิวเคลียร์ 4 โรงนั้น ระยะเวลาการก่อสร้างต่อโรงอยู่ที่ประมาณ 6-7 ปี [60]

ต้นทุนและความเสี่ยง[แก้]

อ้างอิง[แก้]

  1. [1], ความเสี่ยงของการลงทุนสร้างโรงไฟฟ้านิวเคลียร์ โดย ธารา บัวคำศรี กรีนพีซ
  2. [2], ความเสี่ยงของการลงทุนสร้างโรงไฟฟ้านิวเคลียร์ โดย ธารา บัวคำศรี กรีนพีซ
  3. World Nuclear Association; The economics of nuclear Power, updated July 2012 Their operations and maintenance (O&M) and fuel costs (including used fuel management) are, along with hydropower plants, at the low end of the spectrum and make them very suitable as base-load power suppliers.
  4. http://www.iaea.org/pris/
  5. "World Nuclear Power Reactors 2007-08 and Uranium Requirements". World Nuclear Association. 2008-06-09. Archived from the original on March 3, 2008. สืบค้นเมื่อ 2008-06-21. 
  6. http://www.matichon.co.th/prachachat/prachachat_detail.php?s_tag=02p0109031250&day=2007-12-03&sectionid=0201
  7. "Graphite Reactor". 31 October 2013. 
  8. "Graphite Reactor Photo Gallery". 31 October 2013. 
  9. "First Atomic Power Plant at X-10 Graphite Reactor". 31 October 2013. 
  10. World Nuclear Association, Nuclear Power in Russia, June 2006
  11. "Queen switches on nuclear power". BBC Online. 17 October 2008. สืบค้นเมื่อ 1 April 2012. 
  12. William, Kaspar et al. (2013). A Review of the Effects of Radiation on Microstructure and Properties of Concretes Used in Nuclear Power Plants. Washington, D.C.: Nuclear Regulatory Commission, Office of Nuclear Regulatory Research.
  13. "How nuclear power works". HowStuffWorks.com. สืบค้นเมื่อ September 25, 2008. 
  14. the largest nuclear generating facility in the world
  15. 15.0 15.1 Kidd, Steve (January 21, 2011). "New reactors—more or less?". Nuclear Engineering International. 
  16. Ed Crooks (12 September 2010). "Nuclear: New dawn now seems limited to the east". Financial Times. สืบค้นเมื่อ 12 September 2010. 
  17. The Future of Nuclear Power. Massachusetts Institute of Technology. 2003. ISBN 0-615-12420-8. สืบค้นเมื่อ 2006-11-10. 
  18. Massachusetts Institute of Technology (2011). "The Future of the Nuclear Fuel Cycle". p. xv. 
  19. Pandora's box: A is for Atom - Adam Curtis
  20. Daniel E Whitney (2003). "Normal Accidents by Charles Perrow". Massachusetts Institute of Technology. 
  21. Benjamin K. Sovacool (January 2011). "Second Thoughts About Nuclear Power". National University of Singapore. p. 8. 
  22. Massachusetts Institute of Technology (2003). "The Future of Nuclear Power". p. 48. 
  23. http://www.uvm.edu/~vlrs/Energy/NuclearPower.pdf
  24. Massachusetts Institute of Technology (2003). "The Future of Nuclear Power". p. 49. 
  25. 25.0 25.1 Diaz Maurin, François (26 March 2011). "Fukushima: Consequences of Systemic Problems in Nuclear Plant Design". Economic & Political Weekly 46 (13): 10–12. 
  26. 26.0 26.1 Jan Willem Storm van Leeuwen (2008). Nuclear power – the energy balance
  27. Stephanie Cooke (2009). In Mortal Hands: A Cautionary History of the Nuclear Age, Black Inc., p. 280.
  28. Perrow, C. (1982), ‘The President’s Commission and the Normal Accident’, in Sils, D., Wolf, C. and Shelanski, V. (Eds), Accident at Three Mile Island: The Human Dimensions, Westview, Boulder, pp.173–184.
  29. doi:10.1038/477404a
    This citation will be automatically completed in the next few minutes. You can jump the queue or expand by hand
  30. Union of Concerned Scientists: Nuclear safety
  31. Globalsecurity.org: Nuclear Power Plants: Vulnerability to Terrorist Attack p. 3.
  32. Safety of Nuclear Power Reactors, World Nuclear Association, http://www.world-nuclear.org/info/inf06.html
  33. Matthew Wald (June 15, 2011). "U.S. Reactors Unprepared for Total Power Loss, Report Suggests". New York Times. 
  34. 34.0 34.1 Benjamin K. Sovacool (2011). Contesting the Future of Nuclear Power: A Critical Global Assessment of Atomic Energy, World Scientific, p. 192.
  35. U.S. NRC: "Nuclear Security – Five Years After 9/11". Accessed 23 July 2007
  36. Threat Assessment: U.S. Nuclear Plants Near Airports May Be at Risk of Airplane Attack, Global Security Newswire, June 11, 2003.
  37. Newtan, Samuel Upton (2007). Nuclear War 1 and Other Major Nuclear Disasters of the 20th Century, AuthorHouse, p.146.
  38. "STATEMENT FROM CHAIRMAN DALE KLEIN ON COMMISSION'S AFFIRMATION OF THE FINAL DBT RULE". Nuclear Regulatory Commission. สืบค้นเมื่อ 2007-04-07. 
  39. "The Nuclear Fuel Cycle". Information and Issue Briefs. World Nuclear Association. 2005. สืบค้นเมื่อ 2006-11-10. 
  40. Lewis Z Koch (2004). "Dirty Bomber? Dirty Justice". Bulletin of the Atomic Scientists. สืบค้นเมื่อ 2006-11-10. 
  41. 41.0 41.1 41.2 41.3 Dr. Frauke Urban and Dr. Tom Mitchell 2011. Climate change, disasters and electricity generation. London: Overseas Development Institute and Institute of Development Studies
  42. COMMUNIQUE N°7 - INCIDENT SUR LE SITE DU BLAYAIS ASN, published 1999-12-30, accessed 2011-03-22
  43. Jason Clenfield (March 17, 2011). "Japan Nuclear Disaster Caps Decades of Faked Reports, Accidents". Bloomberg Businessweek. 
  44. ABC News. Strong Quake Rocks Northwestern Japan. July 16, 2007.
  45. Xinhua News. Two die, over 200 injured in strong quake in Japan. July 16, 2007.
  46. Genpatsu-Shinsai: Catastrophic Multiple Disaster of Earthquake and Quake-induced Nuclear Accident Anticipated in the Japanese Islands (Abstract), Katsuhiko Ishibashi, 23rd. General Assembly of IUGG, 2003, Sapporo, Japan, accessed 2011-03-28
  47. Yoichi Funabashi and Kay Kitazawa (March 1, 2012). "Fukushima in review: A complex disaster, a disastrous response". Bulletin of the Atomic Scientists. 
  48. "Glossary: Safety-related". สืบค้นเมื่อ 2011-03-20. 
  49. "What you can do to protect yourself: Be Informed". Nuclear Power Plants | RadTown USA | US EPA. United States Environmental Protection Agency. สืบค้นเมื่อ March 12, 2012. 
  50. 50.0 50.1 Nuclear Information and Resource Service (NIRS): ROUTINE RADIOACTIVE RELEASES FROM NUCLEAR REACTORS - IT DOESN’T TAKE AN ACCIDENT at the Wayback Machine (archived พฤษภาคม 14, 2011).
  51. 51.0 51.1 "Nuclear Power: During normal operations, do commercial nuclear power plants release radioactive material?". Radiation and Nuclear Power | Radiation Information and Answers. Radiation Answers. สืบค้นเมื่อ March 12, 2012. 
  52. "Radiation Dose". Factsheets & FAQs: Radiation in Everyday Life. International Atomic Energy Agency (IAEA). สืบค้นเมื่อ March 12, 2012. 
  53. "What happens to radiation produced by a plant?". NRC: Frequently Asked Questions (FAQ) About Radiation Protection. Nuclear Regulatory Commission. สืบค้นเมื่อ March 12, 2012. 
  54. "Is radiation exposure from a nuclear power plant always fatal?". NRC: Frequently Asked Questions (FAQ) About Radiation Protection. Nuclear Regulatory Commission. สืบค้นเมื่อ March 12, 2012. 
  55. "UNSCEAR 2008 Report to the General Assembly". United Nations Scientific Committee on the Effects of Atomic Radiation. 2008. 
  56. "Blow-ups happen: Nuclear plants can be kept safe only by constantly worrying about their dangers". The Economist. 10 March 2012. สืบค้นเมื่อ 2012-04-13. "In many places, and particularly in Japan, the industry has felt a need to tell the public that nuclear power is safe in some absolute way. This belief is clearly no longer sustainable. The only plausible replacement is to move from saying “it is safe” to saying “trust us to make it as safe as it can be,” and accepting that in some situations and some communities that trust will not always be given." 
  57. Yoichi Funabashi and Kay Kitazawa (1 March 2012). "Fukushima in review: A complex disaster, a disastrous response". Bulletin of the Atomic Scientists. 
  58. Hiroko Tabuchi (March 3, 2012). "Japanese Prime Minister Says Government Shares Blame for Nuclear Disaster". The New York Times. สืบค้นเมื่อ 2012-04-13. 
  59. Yoichi Funabashi (March 11, 2012). "The End of Japanese Illusions". New York Times. สืบค้นเมื่อ 2012-04-13. 
  60. กฟผ.สร้างเอง4โรงไฟฟ้านิวเคลียร์ 4,000เมกะวัตต์ส่งทีมดูงานฝรั่งเศส

แหล่งข้อมูลอื่น[แก้]