โพลีไซคลิกอะโรมาติกไฮโดรคาร์บอน

จากวิกิพีเดีย สารานุกรมเสรี
พีเอเอชที่พบทั่วไปตามเข็มนาฬิกาจากบนลงล่าง: เบนอีอะซีฟีแนนไทรลีน, ไพรีน และ ไดเบนเอเอชแอนทราซีน
โครงสร้างผลึกของ hexa-tert-butyl derivatized hexa-peri-hexabenzo(bc,ef,hi,kl,no,qr)coronene, รายงานโดย Klaus Müllen และคณะ[1] หมู่ tert-butyl ทำให้สารประกอบนี้ละลายในตัวทำละลายอินทรีย์เช่นเฮกเซน

โพลีไซคลิก อะโรมาติก ไฮโดรคาร์บอน หรือ พีเอเอช เป็นสารประกอบไฮโดรคาร์บอนที่ประกอบด้วยวงเบนซีนตั้งแต่ 2 วงขึ้นไป จัดเรียงเป็นเส้นตรง เป็นมุม หรือเป็นกลุ่ม มีเฉพาะอะตอมของไฮโดรเจนและคาร์บอน ส่วนใหญ่ไม่ละลายน้ำ ค่าลอการิทึมของค่าคงที่การละลายในน้ำ - ออกทานอลระหว่าง 3 - 7 จุดเดือดระหว่าง 150 - 325 องศาเซลเซียส และจุดหลอมเหลวระหว่าง 101 - 438 องศาเซลเซียส ในสิ่งแวดล้อม มักเกาะกับอนุภาคฮิวมิคในดิน หรือสะสมในสิ่งมีชีวิต [2]

คุณสมบัติทางเคมี[แก้]

พีเอเอชที่มีโครงสร้างง่ายที่สุดตามที่กำหนดโดย International Union of Pure and Applied Chemistry (IUPAC) คือ ฟีแนนทรีน และ แอนทราซีนซึ่งประกอบด้วยวงอะโรมาติก 3 วง โมเลกุลที่เล็กกว่า เช่น เบนซีน ไม่นับเป็นพีเอเอช พีเอเอชอาจจะมีวงอะโรมาติก 4 5 6 หรือ 7 วง โดยมากจะมี 5-6 วง แนฟทาลีน (C10H8, ซึ่งประกอบด้วยวงอะโรมาติก 2 วง จัดเป็นอะโรมาติกไฮโดรคาร์บอน ซึ่งในการจัดจำแนกอย่างเป็นทางการ ไม่นับเป็นพีเอเอช แต่อาจจะเรียกว่าไบไซคลิกอะโรมาติกไฮโดรคาร์บอน

พีเอเอชจะมีการเรืองแสงภายใต้รังสียูวีที่เป็นเอกลักษณ์ พีเอเอชที่เป็นไอโซเมอร์กัน แต่ละไอโซเมอร์จะมีสเปกตรัมของการดูดกลืนรังสียูวีที่ต่างไป ซึ่งมีประโยชน์ในการจำแนกพีเอเอช พีเอเอชส่วนใหญ่จะเรืองแสงฟลูออเรสเซนต์ โครงสร้างของอิเล็กตรอนชั้นพาย (pi-electron electronic structures) ของพีเอเอชทำให้เกิดสเปกตรัมของการดูดกลืนแสงแลทำให้พีเอเอชขนาดใหญ่บางชนิดมีคุณสมบัติเป็นสารกึ่งตัวนำ

การตรวจวัดปริมาณ[แก้]

การตรวจวัดปริมาณของพีเอเอชในวัสดุต่างๆ ใช้แก๊สโครมาโตกราฟี ซึ่งมีดีเทคเตอร์เป็นแบบ FID หรือแมสสเปกโตรสโกปี หรือใช้โครมาโคกราฟีของเหลวที่มีดีเทคเตอร์เป็นสเปกโทรสโกปีแบบใช้แสงยูวี หรือใช้เทคนิคฟลูออเรสเซนต์สเปกโทรสโกปี

ที่มาและการปนเปื้อนในสิ่งแวดล้อม[แก้]

PAHs สามารถเกิดได้เองตามธรรมชาติจากกระบวนการเผาไหม้ที่ไม่สมบูรณ์ของสารอินทรีย์ รวมทั้งควันจากท่อไอเสียรถยนต์และควันบุหรี่[3] การเผาไหม้ของเชื้อเพลิงในโรงงานอุตสาหกรรม การกลั่นน้ำมันดิบ อุตสาหกรรมไม้ซึ่งใช้สารเคลือบทาเนื้อไม้เพื่อป้องกันแมลงที่มี PAHs เป็นองค์ประกอบ เช่น creosort และ anthracene oil

PAHs พบได้ทั้งในน้ำ ดิน ดินตะกอน อากาศ ชั้นหินอุ้มน้ำ และบริเวณริมถนน ความเข้มข้นของ PAHs ในสิ่งแวดล้อมขึ้นกับระยะห่างระหว่างบริเวณที่ปนเปื้อนกับแหล่งที่ผลิต PAHs ระดับของการพัฒนาอุตสาหกรรมและความสามารถในการเคลื่อนย้ายของ PAHs [4] สรุปแหล่งที่มาของ PAHs ได้ดังนี้

  • ไอเสียจากการเผาไหม้ของเครื่องยนต์ PAHs ที่พบในอากาศมาจากควันจากท่อไอเสียรถยนต์แลเครื่องจักรกลเป็นส่วนใหญ่ ปริมาณ PAHs ที่รวมตัวกับฝุ่นละอองขนาดเล็กในอากาศบริเวณกรุงเทพมหานครเมื่อ พ.ศ. 2539 บริเวณเส้นทางจราจรพบ benzo[a]pyrene 2.04 ng/m3[5] และ benzo[a]anthracene 1.13 ng/m3[6] ตรวจพบพีเอเอในอากาศที่บริเวณถนนพหลโยธิน จังหวัดปทุมธานีในระดับนาโนกรัมต่อลูกบาศก์เมตร ซึ่งมาจากการจราจร[7]
  • การเผาไหม้ของสารอินทรีย์รวมทั้งการเกิดไฟป่า การเผาตอฟางข้าวของเกษตรกรทำให้เกิดการปนเปื้อนของพีเอเอชในอากาศได้[8]
  • การปนเปื้อนของน้ำมัน ปริมาณ PAHs ที่พบในดินและน้ำตะกอนบริเวณชายฝั่งทะเลมาจากการปนเปื้อนของน้ำมันที่ใช้ในเครื่องจักรกลในโรงงานอุตสาหกรรมและเรือต่างๆรวมทั้งน้ำมันเครื่องเก่าที่ผ่านการใช้แล้ว โดยพบปริมาณสูงในระยะใกล้ฝั่งและน้อยลงตามลำดับเมื่อห่างฝั่งออกไป [9] นอกจากนั้น ดินตะกอนบริเวณปากแม่น้ำยังเป็นแหล่งสะสมของพีเอเอชที่ปนเปื้อนในดินและน้ำที่ถูกน้ำชะมารวมกัน โดยมีรายงานว่าพบปริมาณพีเอเอชที่มีวงแหวนเบนซีน 3-7 วงจากดินตะกอนในลำคลองและแม่น้ำในบริเวณปากแม่น้ำเจ้าพระยาและชายฝั่งอ่าวไทยของประเทศไทย พบปริมาณพีเอเอชรวม 8,399 นาโนกรัมต่อกรัมน้ำหนักแห้งของดิน[10]
  • กระบวนการแปรรูปและปรุงอาหาร การปรุงและการแปรรูปอาหารที่ทำให้เกิด PAHs ได้คือการอบขนม การเคี่ยวน้ำตาลเป็นคาราเมล การคั่วกาแฟซึ่งเกิดจากปฏิกิริยาสีน้ำตาล หรือเกิดขึ้นระหว่างการหมักดอง เช่นผักดองกิมจิ ซีอิ๊ว นอกจากนั้น การปรุงอาหารโดยการอบ ปิ้ง ย่างที่เป็นที่นิยมในปัจจุบัน เช่น ไส้กรอกรมควัน หมูปิ้ง ไกย่าง ที่ไหม้เกรียมทำให้มี PAHs ปนเปื้อนในอาหารได้ [11]

อย่างไรก็ตาม การปนเปื้อนของพีเอเอชในสิ่งแวดล้อม มักไม่พบการปนเปื้อนพีเอเอชเพียงอย่างเดียว แต่จะพบการปนเปื้อนร่วมกับสารมลพิษอื่นโดยเฉพาะโลหะหนักหลายชนิด ได้แก่ สารหนู แบเรียม แคดเมียม โครเมียม ตะกั่ว ปรอท นิกเกิล และสังกะสี [12] ตัวอย่างบริเวณที่มีรายงานว่าพบการปนเปื้อนร่วมกันระหว่างพีเอเอชกับโลหะหนัก ได้แก่ บริเวณริมถนนหลวงในออสเตรียและสาธารณรัฐเช็ก[13] และบริเวณสถานีรถไฟในแคนาดา[14] เป็นต้น ซึ่งการปนเปื้อนร่วมกันระหว่างพีเอเอชและโลหะหนักจะส่งผลเสียต่อการย่อยสลายพีเอเอชโดยจุลินทรีย์ในดิน ทำให้การกำจัดพีเอเอชด้วยวิธีทางชีวภาพยากขึ้น[15]

ตัวอย่างสารประกอบ PAH[แก้]

สารเคมี สารเคมี
Anthracene Benzo[a]pyrene
Chrysene Coronene
Corannulene Naphthacene
Naphthalene Pentacene
Phenanthrene Pyrene
Triphenylene Ovalene

การเปลี่ยนแปลงของ PAHs ในสิ่งแวดล้อม[แก้]

เมื่อ PAHs เข้าสู่สิ่งแวดล้อม อาจเกิดการเปลี่ยนแปลงดังนี้

  • การย่อยสลายทางชีวภาพโดยสิ่งมีชีวิตชนิดต่างๆได้แก่
    • แบคทีเรีย ในสภาวะที่มีออกซิเจน แบคทีเรียจะย่อยสลาย PAHs เริ่มจากการออกซิไดส์ ให้เป็น dihydrodiol จากนั้นจึงแตกวงออกจนได้สารตัวกลางในวัฏจักรเครบส์ และนำไปใช้เป็นแหล่งคาร์บอนและพลังงานได้ในที่สุด [16]
    • เชื้อราบางกลุ่ม เช่น white rot fungi ย่อยสลาย PAHs โดยใช้เอนไซม์สำหรับย่อยสลายลิกนิน เช่น lignin peroxidase ซึ่งเป็นเอนไซม์ที่รากลุ่มนี้ใช้ย่อยสลายเนื้อไม้ แต่เอนไซม์มีความจำเพาะต่ำจึงย่อยสลาย PAHs ที่มีโครงสร้างคล้ายลิกนินได้ด้วย [17]
  • การย่อยสลายด้วยแสง PAHs ถูกออกซิไดส์ด้วยแสงได้
  • การแตกสลายด้วยน้ำ เกิดได้น้อยมาก
  • การรวมตัวกับดิน PAHs เป็นสารที่ไม่ชอบน้ำ ค่าคงที่การละลายในน้ำ - ออกทานอลสูง จึงยึดเกาะกับอนุภาคของดินหรือดินตะกอนได้ดี จึงพบการปนเปื้อนในบริเวณดังกล่าวได้สูง การกระจายในดินชั้นต่างๆขึ้นกับขนาดของโมเลกุลและชั้นดิน PAHs มที่มีวงเบนซีน 2-3 วง มีแนวโน้มจะพบมากในชั้นของทรายบริเวณน้ำใต้ดิน ส่วน PAHs ที่มีวงเบนซีน 5-6 วง มีแนวโน้มที่จะพบในชั้นของดินที่มีสารอินทรีย์มาก และ PAHs เหล่านี้มีแนวโน้มจะถูกย่ยอสลายโดยแบคทีเรียยากอีกด้วย [18]

ความเป็นพิษ[แก้]

โดยทั่วไป โพลีไซคลิก อะโรมาติก ไฮโดรคาร์บอนเป็นสารเคมีที่มีความเป็นพิษเฉียบพลันต่ำ ในสิ่งมีชีวิตชั้นสูงจะพบความเป็นพิษเรื้อรัง การได้รับแบบเรื้อรังอาจทำให้เกิดความเป็นพิษต่อระบบต่างๆของร่างกายได้ แต่อาการไม่รุนแรงนัก ความเป็นพิษที่สำคัญของ PAHs คือความสามารถในการก่อมะเร็งในอวัยวะหลายชนิด แต่ไม่มีผลต่อการพัฒนาของตัวอ่อนและพฤติกรรมของสิ่งมีชีวิต

การเข้าสู่ร่างกาย[แก้]

PAHs เข้าสู่ร่างกายได้หลายวิธี ทั้งโดยการกินอาหารที่ปนเปื้อน PAHs สูดดมไอระเหยหรือเขม่าควันไฟที่มี PAHs ผสมอยู่ หรือโดยการสัมผัสทางผิวหนัง มีรายงานว่า PAHs เข้าสู่ร่างกายโดยการสูดดม โดยพบ เมตาบอไลต์ของเบนโซเอไพรีนในปัสสาวะของอาสาสมัครชายที่สูบบุหรี่ 15 -20 มวนต่อวัน เป็นเวลานานกว่า 10 ปี โดยเมตาบอไลต์ในปัสสาวะของอาสาสมัครที่ยังมีสุขภาพดีมีค่าสูงกว่าในอาสาสมัครที่เป็นมะเร็งปอด และในอาสามัครที่กินเนื้อย่างที่ปนเปื้อนเบนโซเอไพรีนจะพบเบนโซเอไพรีนในอุจจาระ แต่จะไม่พบในอาสามัครที่กินเนื้อย่างที่ไม่ปนเปื้อน[19]

การแพร่กระจายของ PAHs ในร่างกายของสัตว์ทดลองพบว่าเมื่อได้รับโดยการสูดดมและการกินจะแพร่ไปยัง ปอด ตับ ไต และทางเดินอาหาร หนูที่ได้รับเบนโซเอไพรีนโดยการหยอดเข้าหลอดคอ พบว่าเบนโซเอไพรีนจะกระจายไปยังปอด ตับ ทางเดินอาหารและซาก โดยเมตาบอไลต์ในลำไส้จะมากขึ้นเมื่อเวลานานขึ้นแสดงว่ามีการขับออกทางน้ำดีและมีการหมุนเวียนระหว่างลำไส้และตับ และสามารถแพร่ไปยังลูกอ่อนในครรภ์ได้ แต่ไม่มีรายงานเกี่ยวกับการแพร่กระจายหลังการสัมผัสทางผิวหนัง[20]

สารก่อกลายพันธุ์[แก้]

เอนไซม์ของยูคาริโอต จะเปลี่ยนพีเอเอชให้เป็นอนุพันธ์อีปอกไซด์ซึ่งเข้าไปยึดเกาะกับดีเอ็นเอได้[21] เมื่อ PAHs เข้าสู่ร่างกายจะถูกเปลี่ยนรูปด้วยเอนไซม์ในกลุ่มไซโตโครม พี-450ที่มีการทำงานแบบออกซิเดส ซึ่งจะได้เมตาบอไลต์ต่างกันไปแล้วแต่ชนิดของ PAHs เมตาบอไลต์บางชนิดเป็นพิษและเป็นสารก่อมะเร็ง เช่น 3,4-diol-1,2, epoxide ซึ่งเป็นเมตาบอไลต์ของเบนโซเอแอนทราซีน และ 7,8,alpha-dihydroxy-9alpha,10alpha-7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE) ซึ่งเป็นเมตาบอไลต์ของ เบนโซเอไพรีน

เมตาบอไลท์ที่เป็นสารก่อมะเร็ง เช่น BPDE เหล่านี้มี epoxide อยู่ในส่วนที่เรียกว่า "Bay region" epoxide ที่ตำแหน่งนี้ สามารถเปลี่ยนเป็น carbonium ion มีประจุเป็นบวกและมีความไวสูงในการเข้าจับกับสารชีวโมเลกุลที่มีประจุเป็นลบได้

เมตาบอไลต์ดังกล่าวจะเข้าไปจับกับ DNA ที่ตำแหน่งต่างๆ การเข้าจับกับดีเอ็นเอดังกล่าว เมื่อดีเอ็นเอเกิดการจำลองตัวเอง การเติมเบสมาเข้าคู่กับสารที่ถูกจับจะผิดไป ทำให้เกิดมิวเตชันที่ลำดับเบส อย่างไรก็ตาม โอกาสของการเกิดมิวเตชั่นขึ้นกับความสามารถของเซลล์ในการซ่อมแซมดีเอ็นเอที่ผิดปกติและระยะเวลาที่ได้รับสารก่อนการจำลองตัวเอง ถ้าเซลล์ซ่อมแซมได้ทัน การเกิดมิวเตชันจะลดลง เช่นการได้รับ BPDE ในระยะ S จะเกิดมิวเตชันมากว่าระยะ G1 [22]

ความเป็นพิษแบบอื่น[แก้]

ความเป็นพิษต่อพืช[แก้]

PAHs เป็นพิษต่อพืชโดยยับยั้งทั้งการเจริญเติบโต การสังเคราะห์ด้วยแสงและการดูดซึมแร่ธาตุเช่น การทำลายคลอโรฟิลล์ยับยั้งขนส่งอิเล็กตรอน ทำให้พืชเกิดสีเหลือง (Chlorosis) ขึ้น ทำให้พืชเหี่ยวเฉาโดยลดแรงดันเต่งภายในเซลล์พืช ซึ่งเกิดจากการรบกวนการทำงานของเยื่อหุ้มเซลล์ เป็นพิษต่อการเจริญของต้นอ่อนมากกว่าการงอก ความเป็นพิษของ PAHs แต่ละชนิดนั้นจะต่างกันไป ขึ้นกับชนิดของพืช ความสามารถในการระเหย และสภาพแวดล้อมอื่นๆ เช่นความเป็นกรด-ด่างของดิน เป็นต้น[28]

ความเป็นพิษต่อพืชของพีเอเอชแต่ละชนิดมีความแตกต่างกัน ฟีแนนทรีนทำให้การเจริญของยอดและรากพืชลดลง ผลิตไฮโดรเจนเปอรอกไซด์มากขึ้น[29] แอนทราซีน ยับยั้งการขนส่งอิเล็กตรอนระหว่างการสังเคราะห์ด้วยแสง[30] ฟลูโอรีนทำให้การสะสมน้ำในเนื้อเยื่อพืชน้อยลง[31] ฟลูออแรนทีนขัดขวางการขนส่งธาตุอาหาร เช่น ไนโตรเจนและฟอสฟอรัสเข้าสู่เซลล์พืช[32] ทำลายรงควัตถุและรบกวนการทำงานของเอนไซม์ที่ใช้ในการสังเคราะห์ด้วยแสงของพืช[33] อย่างไรก็ตาม เมื่อเกิดการปนเปื้อนพีเอเอชร่วมกันมากกว่า 2 ชนิด ความเป็นพิษของพีเอเอชที่ปนเปื้อนร่วมกันนั้นจะต่างๆไปจากการปนเปื้อนพีเอเอชชนิดเดียว เช่น เมื่อมีฟลูออแรนทีนกับไพรีนในน้ำ จะเป็นพิษต่อสาหร่ายทะเล Phaeodactylum tricornutum มากกว่าการปนเปื้อนชนิดเดียว[34] การที่แอนทราซีนกับฟลูโอแรนทีนปนเปื้อนร่วมกันในดินจะเป็นพิษต่อความยาวและน้ำหนักสดของต้นกล้าฟักทองมากขึ้น[35]

ความเสี่ยง[แก้]

อาชีพที่มีความเสี่ยงที่ต้องสัมผัสกับ PAHs ได้แก่ กระบวนการผลิตโครเมียม การถลุงแร่ที่มีนิกเกิล อุตสาหกรรมอะลูมิเนียม การหลอมเหล็ก การผลิตถ่านหิน งานพิมพ์ที่สัมผัสกับหมึกพิมพ์ งานที่ต้องสัมผัสเขม่าน้ำมัน เช่น ช่างซ่อมถนน ช่างอู่รถ วัสดุในโรงงานที่มีไอระเหยของ PAHs ได้แก่ น้ำมันดิบจากถ่านหินหรือยางมะตอย น้ำมันแร่ที่ไม่ได้ผ่านกระบวนการทำให้บริสุทธิ์ เขม่าจากการเปผาไหม้ ควันไอเสีย ความเสี่ยงต่อมะเร็งปอดอย่างชัดเจน ได้แก่ อาชีพผลิตถ่านหินและก๊าซถ่านหินซึ่งมีผลพลอยได้คือยางมะตอยใช้ทำถนน ส่วนอาชีพอื่นไม่ชัดเจน [36]

อ้างอิง[แก้]

  1. Herwig, Peter T.; Enkelmann, Volker; Schmelz, Oliver; Müllen, Klaus (2000). "Synthesis and Structural Characterization of Hexa-tert-butyl- hexa-peri-hexabenzocoronene, Its Radical Cation Salt and Its Tricarbonylchromium Complex". Chemistry: A European Journal (Chem.-Euro.J.). 18 (10): 1834–1839. doi:10.1002/(SICI)1521-3765(20000515)6:10<1834::AID-CHEM1834>3.0.CO;2-L.
  2. Edwards, N.T. (1983). Polycyclic Aromatic Hydrocarbons (PAH’s) in the terrestrial environmental-a review. Journal of Environmental Quality. 12: 427-441.
  3. Culea, M., Cozai, O., & Culea, E., 2005. PAHs in cigarette smoke by gas chromayography-Mass spectrometry. Indoor and Built Environment 14 (3-4) , 289-292.
  4. Kanaly, R.A. and S. Harayama.2000. Biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons by bacteria. Journal of Bacteriology. 182 (8) : 2059-2067
  5. กรมควบคุมมลพิษ. 2542ก. เบนโซเอไพรีน. กรมควบคุมมลพิษ. 76 หน้า
  6. กรมควบคุมมลพิษ. 2542ข. เบนโซเอแอนทราซีน. กรมควบคุมมลพิษ. 35 หน้า
  7. Oanh, N.T.K., Reutergårdh, L.B., Dung, N.T., Yu, M.H., & Yao, W.X., et al. (2000). Polycyclic aromatic hydrocarbons in the airborne particulate at the location 40 km north of Bangkok, Thailand. Atmospheric Environment, 34,4557-4563.
  8. Gadde, B., Bonnet, S., Menke, C., & Gariviat, S. (2009). Air pollutant emission from rice straw open field burning in India, Thailand, and the Philippines. Environmental Pollution, 157, 1554-1558.
  9. กฤตยาพร ทัพภะทัต. ปิโตรเลียมไฮโดรคาร์บอนในน้ำและตะกอนบริเวณชายฝั่งทะเล จังหวัดระยอง. วิทยานิพนธ์วิทยาศาสตรมหาบัณฑิต บัณฑิตวิทยาลัย จุฬาลงกรณ์มหาวิทยาลัย.
  10. Boonyatumanond, R., Wattayakorn, G., Togo, A., & Takada, H. (2007). Distribution and origins of polycyclic (PAHs) aromatic hydrocarbons in riverine, estarine, and marine sediments in Thailand. Marine Pollution Bulletin, 52, 942-956.
  11. นิธิยา รัตนาปนนท์ และ วิบูลย์ รัตนาปนนท์. 2543. สารพิษในอาหาร. กทม. โอเดียนสโตร์. หน้า 196-201
  12. Sandrin, T.R. and Maier, R.M. 2003. Impact of metal on the biodegradation of organic pollutants. Environmental Health Perspective 111: 1093 – 1101
  13. Zehetner, F., Rosenfellner, U., Mentler, A. and Gerzabek, M.H. 2009. Distribution of road salt residues, heavy metals and polycyclic aromatic hydrocarbons across a highway-forest interface. Water, Air, and Soil Pollution 198: 125 – 132.
  14. Roy, S., Labelle, S., Mehta, P., Mihoc, A., Fortin, N., Masson, C., Leblanc, R., Chateauneuf, G., Sura, C., Gallipeau, C., Olsen, C., Delisle, S., Labrecque, M. and Greer, C.W. 2005. Phytoremediation of heavy metal and PAH-contaminated brownfield sites. Plant and Soil 272: 277 – 290.
  15. Somtrakoon, K., Suanjit, S., Pokethitiyook, P., Kruatrachue, M., Cassidy, M.B., Trevors, J.T., Lee, H. and Upatham, S. 2009. Comparing phenanthrene degradation by alginate-encapsulated and free Pseudomonas sp. UG14Lr cells in heavy metal contaminated soils. Journal of Chemical Technology and Biotechnology 84: 1660 – 1668
  16. Kanaly and Harayama, 2000
  17. Baldrian,P., C. Wiesche, J.Gabriel, F. Nerud, and F. Zadrazil. 2000. Influence of cadmium on activities of lignolytic exzymes and degradation of polycyclic aromatic hydrocarbons by Pleurotus ostreatus in soil. Applied and Environmental Microbiology. 66 (6) : 2471 - 2478.
  18. Breedveld, G.D. and D.A. Karlsen. 2000. Estimating the availibility of polycyclic aromatic hydrocarbons for bioremediation of creosort contaminated soils. Applied Microbiology and Biotechnology. 54: 255-261.
  19. กรมควบคุมมลพิษ, 2542ข
  20. กรมควบคุมมลพิษ, 2542ข
  21. Mahadevan, B., Luch, A., Bravo, C.F., Atkin, J., Steppan, L.B., Pereira, C., Kerkuliet, N.I., and Baird, W.M. 2005. Dibenzo[a, l]pyrene induce DNA adduct formation in lung tissue in vivo. Cancer Letter 227, 25-32
  22. Mahar, V.M., R.H. Chen, and J.J. McCormick. 1995. Biological and biochemical evidence of strand-specific repair of DNA damage induce in Human cell by 7,8,alpha-dihydroxy-9alpha,10alpha-7,8,9,10-tetrahydrobenzo[a]pyrene In Application of Molecular Biology in Environmental Chemistry. A.Minear, A.M. Ford, L.L. Needham, and N.J. Karch. CRC Press. Inc. New York
  23. Monterio, P.P.R., Reis-Henriques, M.A. & Coimbra, J. (2000). Plasma steroid levels in female flounder (Platichthys flesus) after chronic dietary exposure to single Polycyclic Aromatic Hydrocarbons. Marine Environmental Research. 49 : 453-467.
  24. Oberdoerster, E., D.M. Cottam, F. A. Wilmot, M.J. Milner, and J.A. Mclachlan. 1999. Interaction of PAHs and PCBs with ecdysone-dependent gene expression and cell perliferation. Toxicology and Applied Phamacology. 160 (1) :101-108
  25. Ghoshal, S., Weber, W.J. Rummel, A.M. Trosko, J.E. & Upham, B.L. (1999). Epigenetic toxicity of a mixture of Polycyclic Aromatic Hydrocarbons on gap junctional intercellular communication before and after biodegradation. Environmental Science and Technology. 33 : 1044-1050
  26. กรมควบคุมมลพิษ, 2542ข
  27. Manuaghton et al. 1999. Microbial population changes during bioremediation of an experimental oil spill. Applied and Environmental Microbiology. 65: 3566 - 3574
  28. วราภรณ์ ฉุยฉาย. 2554. การแพร่กระจายและความเป็นพิษต่อพืชของโพลีไซคลิก อะโรมาติก ไฮโดรคาร์บอน. วารสารวิชาการและวิจัย มหาวิทยาลัยเทคโนโลยีราชมงคลพระนคร, 5 (1), 140 - 152
  29. Alkio, M., Tabuchi, T.M., Wang, X., & Colon-Carmona, A. (2005). Stress responses to polycyclic aromatic hydrocarbons in Arabidopsis induce growth inhibition and hypersensitive response-like symptoms. Journal of Experimental Botany, 56, 2983 – 2994.
  30. Malakin, A., Babu, T.S., Dixon, D.G., & Greenberg, B.M.(2002).Sites of toxicity of specific photooxidation products of anthracene to higher plants: Inhibition of photosynthetic activity and electron transport in Lemna gibba L.G-3 (Duckweed). Environmental Toxicology, 17, 462 - 471
  31. Sverdrup, L. E., Krogh, P. H., Nielsen, T., Kjaer, C., & Stenersen, J. (2003). Toxicity of eight polycyclic aromatic compounds to red clover (Trifolium pratense), ryegrass (Lolium parenne), and mustard (Sinapsis alba). Chemosphere, 53, 993-1003.
  32. Kummerová, M., Krulová, J., Zezulka, Š., & Tříska,J. (2006). Evaluation of fluoranthrene phytotoxicity in pea plants by Hill reaction and chlorophyll fluorescence. Chemosphere, 65, 489-496.
  33. Oguntimehin, I., Nakatani, N., & Sakugawa, H. (2008). Phytotoxicities of fluoranthene and phenanthrene deposited on needle surfaces of the evergreen conifer, Japanese red pine (Pinus densiflora Sieb. Et Zucc.). Environmental Pollution, 154, 264-271.
  34. Wang, L., Zheng, B., & Meng, W. (2008). Photo-induced toxicity of four polycyclic aromatic hydrocarbons, singly and in combination, to the marine diatom Phaeodactylum tricornutum. Ecotoxicology and Environmental Safety, 71, 465-472
  35. ขนิษฐา สมตระกูล ดวงกมล ผลาผล และวราภรณ์ ฉุยฉาย. 2554. การตอบสนองของต้นกล้าฟักทองต่อการปนเปื้อนร่วมกันระหว่างพอลิไซคลิกอะโรมาติกไฮโดรคาร์บอน 4 ชนิด[ลิงก์เสีย]. การประชุมวิชาการนเรศวรวิจัย ครั้งทึ่7. 29 – 30 กรกฎาคม 2554 หน้า 53 - 62
  36. นฤมล ศิลารักษ์ และ สมชัย บวรกิตติ. 2542. โรคมะเร็งเหตุอาชีพ. วารสารเวชศาสตร์สิ่งแวดล้อม. 1 (2) :526-535