เพนดูลัมผกผัน

จากวิกิพีเดีย สารานุกรมเสรี
แบบจำลองทางคณิตศาสตร์ของเพนดูลัมผกผันสามารถประยุกต์ใช้กับระบบควบคุมการทรงตัวของพาหนะอย่าง เซกเวย์ (Segway)ได้

เพนดูลัมผกผัน (อังกฤษ: Inverted pendulum) เป็นปัญหาพื้นฐานที่ใช้ในการเรียนการสอนและในการสาธิตการประยุกต์ทฤษฎีระบบควบคุม เพนดูลัมผกผันเป็นระบบที่มีจุดสมดุลอยู่รอบแกนหมุนด้วยกันสองจุด ได้แก่จุดที่เพนดูลัมตั้งตรงอยู่ในแนวดิ่ง และจุดที่เพนดูลัมอยู่ทิ้งตัวลงในดิ่ง แต่จุดที่มีเสถียรภาพเมื่อไม่มีตัวควบคุมนั้นจะมีจุดเดียวคือ จุดที่แกนทิ้งตัวลงเท่านั้น ไม่ว่าเราจะปล่อยเพนดูลัมที่จุดใดก็ตาม เพนดูลัมจะตกลงสู่จุดนี้เสมอ การที่จะทำให้เพนดูลัมนี้สามารถตั้งตรงในแนวดิ่งได้นั้นขึ้นกับการใส่ตัวควบคุมที่เหมาะสมเข้าไปในระบบซึ่งมีได้หลากหลายวิธี และอีกทั้งยังสามารถออกแบบตัวควบคุมให้เป็นเชิงเส้น หรือแบบไม่เชิงเส้นก็ได้ ทั้งนี้ขึ้นอยู่กับความต้องการของผู้ออกแบบและความเหมะสม [1]

แบบจำลองทางคณิตศาสตร์ของเพนดูลัมผกผัน[2][3][แก้]

ในที่นี้เราจะหาแบบจำลองทางคณิตศาสตร์ของเพนดูลัมผกผันโดยใช้กลศาสตร์แบบลากรางจ์ (Lagrange's equations) และตั้งสมุมติฐานเพื่อความง่ายต่อความเข้าใจและยังคงไม่สูญเสียความเป็นรูปแบบทั่วไปว่าระบบเคลือนที่อยู่ในระนาบ 2 มิติ แกน x - y ได้เท่านั้น โดยตัวแปรต่างๆเราจะอ้างอิงตัวแปรเดียวกับที่ปรากฏในภาพ กล่าวคือ \theta(t) คือ มุมที่แท่งเพนดูลัมทำกับแนวตั้งฉากกับพื้นโลก และให้แท่งเพนดูลัมมีความยาว l ให้แรงจากภายนอกเป็น F กระทำในทิศ x ดังภาพ และแรงโน้มถ่วงของโลกกระทำในแนวแกน y และกำหนดให้ x(t) เป็นระยะของรถในแกน x ที่แปรผันตามเวลา และสมการลากรางจ์ (Lagrangian) ของระบบเป็นดังต่อไปนี้[4] L = T - V โดย T คือพลังงานจลน์ของระบบ และ V คือพลังงานศักย์ของระบบ

รูปภาพแสดงรูปแบบของเพนดุลัมผกผันและตัวแปรที่ใช้ในการสร้างแบบจำลองทางคณิตศาสตร์


L = \frac{1}{2} M v_1^2  + \frac{1}{2} m v_2^2 - m g \ell\cos\theta
โดย v_1 เป็นความเร็วของของตัวรถ v_2 เป็นความเร็วของจุดศูนย์กลางมวล m ของมวลบนแท่งเพนดูลัม.
ทั้งนี้ v_1 และ v_2 สามารถเขียนให้อยู่ในรูปของ x และ \theta ดังต่อไปนี้


v_1^2=\dot x^2

v_2^2=\left({\frac{d}{dt}}{\left(x- \ell\sin\theta\right)}\right)^2 + \left({\frac{d}{dt}}{\left( \ell\cos\theta \right)}\right)^2

ทำการลดรูป v_2 ได้ผลเป็น


v_2^2= \dot x^2 -2 \ell \dot x \dot \theta\cos \theta + \ell^2\dot \theta^2

แทนสมการข้างต้นลงในสมการลากรางจ์ ได้ว่า:


L = \frac{1}{2} \left(M+m \right ) \dot x^2 -m \ell \dot x \dot\theta\cos\theta + \frac{1}{2} m \ell^2 \dot \theta^2-m g \ell\cos \theta

และสมการการเคลือนที่:


\frac{\mathrm{d}}{\mathrm{d}t}{\partial{L}\over \partial{\dot x}} - {\partial{L}\over \partial x} = F

\frac{\mathrm{d}}{\mathrm{d}t}{\partial{L}\over \partial{\dot \theta}} - {\partial{L}\over \partial \theta} = 0

แทนที่ L ในสมการข้างต้นจะได้สมการที่อธิบายการเลือนที่ของเพนดูลัมแบบผกผันดังนี้


\left ( M + m \right ) \ddot x - m \ell \ddot \theta \cos \theta + m \ell \dot \theta^2 \sin \theta = F

\ell \ddot \theta - g \sin \theta = \ddot x \cos \theta

จะเห็นได้ว่าสมการที่ได้เป็นสมการไม่เชิงเส้นซึ่งยากที่จะนำไปออกแบบตัวควบคุม ในทางปฏิบัติผู้ออกแบบจะนิยมแปรงสมการไม่เชิงเส้นให้เป็นสมการเชิงเส้นก่อน โดยสมมุติว่าแท่งเพนดุลัมแกว่งอยู่ในช่วงมุมเล็กๆซึ่งประมาณเป็น 0 ได้ ( \theta \approx 0 ) ทั้งนี้เพื่อความง่ายต่อการออกแบบตัวควบคุม และง่ายต่อการอธิบายพฤติกรรมของระบบ

ดูเพิ่ม[แก้]

อ้างอิง[แก้]

  1. เดวิด บรรเจิดพงศ์ชัย, ภาควิชาวิศวกรรมไฟฟ้า คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย "ระบบควบคุมพลวัต การวิเคราะห์ การออกแบบ และการประยุกต์ (Dynamical Control Systems Analysis, Design and Applications)" สำนักพิมพ์แห่งจุฬาลงกรณ์มหาวิทยาลัย 2551 (ISBN 978-974-03-2205-4)
  2. M.W. Spong and M. Vidyasagar. Dynamics and Control of Root Manipulators. John Wiley, 1989
  3. Katsuhiko Ogata, Modern control engineering (Edition 5), Prentice Hall, 2010, ISBN 0136156738,9780136156734
  4. [1] Simple Inverted Pendulum Cart Dynamics Lagrangian Development by Jaspen Patenaude

แหล่งข้อมูลอื่น[แก้]