รูปสี่เหลี่ยมคางหมู

จากวิกิพีเดีย สารานุกรมเสรี
(เปลี่ยนทางจาก สี่เหลี่ยมคางหมู)
รูปสี่เหลี่ยมคางหมู
Trapezoid.svg
รูปสี่เหลี่ยมคางหมูรูปหนึ่ง
ชนิด รูปสี่เหลี่ยม
ขอบและจุดยอด 4
พื้นที่ \tfrac{a + b}{2} h
สมบัติ รูปหลายเหลี่ยมนูน

ในทางเรขาคณิต รูปสี่เหลี่ยมคางหมู คือรูปสี่เหลี่ยมชนิดหนึ่งที่มีด้านตรงข้ามขนานกันจำนวนหนึ่งคู่ รูปสี่เหลี่ยมคางหมู ABCD เขียนแทนด้วยสัญลักษณ์ Trapezoid small icon.pngABCD หรือ ⏢ ABCD

ภาษาอังกฤษสำเนียงอเมริกันเรียกรูปสี่เหลี่ยมคางหมูว่า trapezoid ในขณะที่สำเนียงอังกฤษและออสเตรเลียเรียกว่า trapezium ในทางกลับกัน สำเนียงอเมริกันเรียกรูปสี่เหลี่ยมด้านไม่ขนาน (ด้านไม่เท่า) ว่า trapezium ในขณะที่สำเนียงอังกฤษและออสเตรเลียเรียกว่า trapezoid [1][2]

นิยาม[แก้]

มีข้อถกเถียงเกี่ยวกับจำนวนด้านที่ขนานกันในรูปสี่เหลี่ยมคางหมู ปัญหาอยู่ที่ว่ารูปสี่เหลี่ยมด้านขนานซึ่งมีด้านขนานกันสองคู่ควรจัดเป็นรูปสี่เหลี่ยมคางหมูหรือไม่ ผู้แต่งตำรากลุ่มหนึ่ง [3] นิยามว่ารูปสี่เหลี่ยมคางหมูเป็นรูปสี่เหลี่ยมที่มีด้านขนานกัน เพียงหนึ่งคู่เท่านั้น โดยไม่นำรูปสี่เหลี่ยมด้านขนานมารวม ราชบัณฑิตยสถานได้ให้นิยามของรูปสี่เหลี่ยมคางหมูไว้ว่า รูปสี่เหลี่ยมคางหมูคือรูปสี่เหลี่ยมด้านขนานที่มีด้านขนานกันเพียงคู่เดียว [4] และพจนานุกรมศัพท์วิทยาศาสตร์ คณิตศาสตร์ และเทคโนโลยี ของสถาบันส่งเสริมการสอนวิทยาศาสตร์และเทคโนโลยี ได้ให้คำนิยามไว้ว่า รูปสี่เหลี่ยมคางหมูคือรูปสี่เหลี่ยมใด ๆ ที่มีด้านตรงข้ามขนานกันคู่หนึ่ง และคู่เดียวเท่านั้น [5]

ผู้แต่งตำราอีกกลุ่มหนึ่ง [6] นิยามว่ารูปสี่เหลี่ยมคางหมูเป็นรูปสี่เหลี่ยมที่มีด้านขนานกัน อย่างน้อยหนึ่งคู่ ซึ่งทำให้รูปสี่เหลี่ยมด้านขนานเป็นกรณีพิเศษของรูปสี่เหลี่ยมคางหมู (รวมไปถึงรูปสี่เหลี่ยมขนมเปียกปูน รูปสี่เหลี่ยมมุมฉาก รูปสี่เหลี่ยมผืนผ้า และรูปสี่เหลี่ยมจัตุรัสด้วย) นิยามอย่างหลังสอดคล้องกับการใช้งานในคณิตศาสตร์ระดับสูงกว่าเช่นแคลคูลัส แนวคิดการประมาณด้วยหลักเกณฑ์เชิงสี่เหลี่ยมคางหมู (trapezoidal rule) ของปริพันธ์จำกัดเขตจะไม่สมบูรณ์หากใช้นิยามอย่างแรก

พื้นที่[แก้]

พื้นที่ของรูปสี่เหลี่ยมคางหมูใด ๆ สามารถคำนวณได้จาก [6]

\mathrm{Area} = \frac{a + b}{2} \cdot h

เมื่อ a, b คือความยาวของด้านคู่ขนานและ h คือความสูงระหว่างด้านคู่ขนาน เมื่อประมาณ ค.ศ. 499 นักคณิตศาสตร์และนักดาราศาสตร์ชาวอินเดียชื่อ อารยภฏะ ได้ใช้วิธีการคำนวณนี้ในศาสตรนิพนธ์ อารยภฏียะ (ตอนที่ 2.8) [7] สูตรนี้เป็นผลได้มาจากกรณีพิเศษของสูตรพื้นที่รูปสามเหลี่ยมอันเป็นที่รู้จัก โดยพิจารณาว่ารูปสามเหลี่ยมคือภาวะลดรูปของรูปสี่เหลี่ยมคางหมู ซึ่งด้านที่ขนานกันด้านหนึ่งยุบลงจนกลายเป็นจุด

ส่วนของเส้นตรงกึ่งกลางรูปสี่เหลี่ยมคางหมู คือส่วนของเส้นตรงที่เชื่อมระหว่างจุดกึ่งกลางของด้านที่ไม่ขนานกัน ความยาวของส่วนของเส้นตรงนี้ m เท่ากับค่าเฉลี่ยความยาวของด้านคู่ขนานของรูปสี่เหลี่ยมคางหมู

m = \frac{a + b}{2}

เป็นผลให้พื้นที่ของรูปสี่เหลี่ยมคางหมู เท่ากับความยาวของส่วนของเส้นตรงกึ่งกลางรูปสี่เหลี่ยมคางหมูคูณด้วยความสูง

\mathrm{Area} = mh\,

ถ้าให้ a, b เป็นด้านที่ขนานกันและ c, d เป็นด้านที่ไม่ขนานกัน ในกรณีที่ด้านคู่ขนานยาวไม่เท่ากัน (ab) จะสามารถคำนวณหาความสูง h ได้จากสูตรนี้

h= \frac{\sqrt{(-a+b+c+d)(a-b+c+d)(a-b+c-d)(a-b-c+d)}}{2(b-a)}

และพื้นที่ของรูปสี่เหลี่ยมคางหมูนี้เท่ากับ

\mathrm{Area} = \frac{a+b}{4(b-a)}\sqrt{(-a+b+c+d)(a-b+c+d)(a-b+c-d)(a-b-c+d)}

เมื่อด้านคู่ขนานด้านหนึ่งยุบลงจนกลายเป็นจุด (a = 0) สูตรนี้จะลดรูปลงเป็นสูตรของเฮรอนสำหรับคำนวณพื้นที่รูปสามเหลี่ยม

สูตรพื้นที่อีกสูตรหนึ่งที่เทียบเท่า ซึ่งดูคล้ายสูตรของเฮรอนมากกว่าคือ

\mathrm{Area} = \frac{(a+b)}{b-a}\sqrt{(s-b)(s-a)(s-b-c)(s-b-d)}
s = \frac{a + b + c + d}{2}

โดยที่ s คือครึ่งหนึ่งของความยาวรอบรูปของรูปสี่เหลี่ยมคางหมู แม้สูตรนี้จะดูคล้ายสูตรของพรัหมคุปตะแต่ก็มีบางจุดที่ต่างไป เนื่องจากรูปสี่เหลี่ยมคางหมูอาจไม่ใช่รูปสี่เหลี่ยมวงกลมล้อม (บรรจุภายในรูปวงกลมพอดีไม่ได้) สูตรนี้ก็ยังเป็นกรณีพิเศษของสูตรของเบรทชไนเดอร์สำหรับรูปสี่เหลี่ยมทั่วไป

หากใช้สูตรของเบรทชไนเดอร์จะได้

\mathrm{Area}= \sqrt{\frac{(ab^2-a^2 b-ad^2+bc^2)(ab^2-a^2 b-ac^2+bd^2)}{(2(b-a))^2} - \left(\frac{b^2+d^2-a^2-c^2}{4}\right)^2}

จุดกึ่งกลางของพื้นที่ (ศูนย์กลางมวลของแผ่นเอกรูป) อยู่บนส่วนของเส้นตรงที่เชื่อมโยงระหว่างจุดกึ่งกลางของด้านที่ขนานกัน ในระยะห่างตั้งฉาก d จากด้านที่ยาวกว่า b ดังนี้

d = \frac{h}{3} \cdot \left( \frac{2a+b}{a+b} \right)

สมบัติ[แก้]

  • รูปสี่เหลี่ยมคางหมูหน้าจั่ว ซึ่งเป็นรูปสี่เหลี่ยมคางหมูชนิดหนึ่ง มีสมบัติเพิ่มเติมว่ามุมที่ฐานมีขนาดเท่ากัน และด้านที่ไม่ขนานจะยาวเท่ากัน
  • รูปสี่เหลี่ยมรูปหนึ่งจะเป็นรูปสี่เหลี่ยมคางหมู ก็ต่อเมื่อมุมที่อยู่ติดกันรวมเป็นมุมประกอบสองมุมฉาก (180 องศา) จำนวนสองคู่ เงื่อนไขอีกอย่างหนึ่งที่สำคัญและเพียงพอคือ เส้นทแยงมุมตัดกันด้วยอัตราส่วนของความยาวเท่ากัน (ค่านี้เป็นค่าเดียวกับอัตราส่วนระหว่างด้านคู่ขนาน)
  • เส้นตรงที่ลากผ่านจุดกึ่งกลางของด้านคู่ขนานทั้งสองแบ่งครึ่งพื้นที่ของรูปสี่เหลี่ยมคางหมู
  • Trapezium.svg
    ถ้ารูปสี่เหลี่ยมคางหมู ABCD แบ่งเป็นรูปสามเหลี่ยมสี่รูปด้วยเส้นทแยงมุม AC และ BD (ดังภาพด้านขวามือ) ซึ่งตัดกันที่จุด O ดังนั้นพื้นที่ของ Trianglen.svgAOD เท่ากับพื้นที่ของ Trianglen.svgBOC และผลคูณของพื้นที่ระหว่าง Trianglen.svgAOD กับ Trianglen.svgBOC เท่ากับผลคูณของพื้นที่ระหว่าง Trianglen.svgAOB กับ Trianglen.svgCOD อัตราส่วนของพื้นที่ของรูปสามเหลี่ยมแต่ละคู่ที่อยู่ติดกันจะเท่ากับอัตราส่วนของความยาวของด้านคู่ขนาน
  • ความยาวของเส้นทแยงมุม p, q เท่ากับ (a, b คือความยาวของด้านคู่ขนาน)
    p= \sqrt{\frac{ab^2-a^2b-ac^2+bd^2}{b-a}}
    q= \sqrt{\frac{ab^2-a^2b-ad^2+bc^2}{b-a}}
  • กำหนดให้ ABCD เป็นรูปสี่เหลี่ยมคางหมูที่มีจุดยอด A, B, C, D เรียงตามลำดับและมีด้านคู่ขนาน AB กับ DC ; ให้ E เป็นจุดตัดของเส้นทแยงมุม และให้ F กับ G เป็นจุดจุดหนึ่งที่อยู่บนด้าน DA กับ BC ตามลำดับซึ่งทำให้ FEG ขนานกับด้านคู่ขนาน AB กับ DC ; จะได้ว่า FG คือมัชฌิมฮาร์มอนิกของ AB กับ DC นั่นคือ
    \frac{1}{FG}=\frac{1}{2} \left( \frac{1}{AB}+ \frac{1}{DC} \right)

สถาปัตยกรรม[แก้]

วิหาร Dendur ซึ่งจัดแสดงในพิพิธภัณฑ์ศิลปะนิวยอร์ก

ในสถาปัตยกรรมแบบอียิปต์โบราณ มีการเจาะช่องหน้าต่าง ประตู และการก่อสร้างตัวอาคารเป็นรูปสี่เหลี่ยมคางหมูโดยมีด้านฐานกว้างกว่าด้านยอด

ดูเพิ่ม[แก้]

อ้างอิง[แก้]

แหล่งข้อมูลอื่น[แก้]