สัญลักษณ์ชเลฟลี

จากวิกิพีเดีย สารานุกรมเสรี
ทรงสิบสองหน้าปรกติ เป็นทรงหลายหน้าปรกติที่มีสัญลักษณ์ชเลฟลีเป็น {5, 3} ซึ่งมีรูปห้าเหลี่ยมปรกติสามรูปรอบจุดยอดจุดหนึ่ง

ในทางเรขาคณิต สัญลักษณ์ชเลฟลี (อังกฤษ: Schläfli symbol) คือสัญกรณ์ที่อยู่ในรูปแบบ {p, q, r, …} ที่เป็นตัวกำหนดพอลิโทปและเทสเซลเลชันปรกติ ตั้งชื่อตามลุดวิก ชเลฟลี (Ludwig Schläfli) นักคณิตศาสตร์ในคริสต์ศตวรรษที่ 19 ผู้มีส่วนร่วมคนสำคัญในเรื่องเรขาคณิตและพื้นที่อื่น ๆ

คำอธิบาย[แก้]

สัญลักษณ์ชเลฟลีเป็นบทนิยามเวียนเกิดชนิดหนึ่ง เริ่มต้นด้วย {p} หมายถึงรูปหลายเหลี่ยมปรกติที่มี p ด้าน ตัวอย่างเช่น {3} คือรูปสามเหลี่ยมปรกติ (ด้านเท่ามุมเท่า), {4} คือรูปสี่เหลี่ยมปรกติ (จัตุรัส) เป็นต้น

ถัดไปคือ {p, q} หมายถึงทรงหลายหน้าปรกติที่แต่ละหน้าเป็นรูป p เหลี่ยมปรกติและมีเป็นจำนวน q รูปรอบจุดยอดจุดหนึ่ง ตัวอย่างเช่น ทรงลูกบาศก์มีรูปสี่เหลี่ยมจัตุรัสรอบจุดยอดจุดหนึ่งเป็นจำนวนสามรูป ดังนั้นจึงเขียนแทนด้วย {4, 3}

{p, q, r} ก็คือพอลิโทปสี่มิติปรกติที่แต่ละห้อง (cell) เป็นทรงหลายหน้าปรกติ {p, q} และมีเป็นจำนวน r รูปทรงรอบขอบด้านหนึ่ง เป็นเช่นนี้เรื่อยไป

พอลิโทปปรกติสามารถมีองค์ประกอบเป็นรูปดาวหลายแฉกได้ เช่นรูปดาวห้าแฉก (pentagram) ใช้สัญลักษณ์ {5/2} เป็นตัวแทนของจุดยอดแบบรูปห้าเหลี่ยมแต่เชื่อมโยงกันในรูปแบบที่ต่างไป

แฟซิต (facet) ของพอลิโทปปรกติ {p, q, r, …, y, z} โดยทั่วไปคือ {p, q, r, …, y} ซึ่งมีเป็นจำนวน z แฟซิตรอบจุดยอดแต่ละจุด

พอลิโทปปรกติจะมีภาพจุดยอด (vertex figure) เป็นรูปปรกติด้วย ดังนั้นภาพจุดยอดของพอลิโทปปรกติ {p, q, r, …} คือ {q, r, …}

สัญลักษณ์ชเลฟลีสามารถเขียนแทนทรงหลายหน้าแบบนูนที่มีขอบเขตจำกัด เทสเซลเลชันที่มีขอบเขตไม่จำกัดบนปริภูมิแบบยุคลิด หรือเทสเซลเลชันที่มีขอบเขตไม่จำกัดบนปริภูมิเชิงไฮเพอร์โบลา ขึ้นอยู่กับความบกพร่องแบบมุม (angle defect) ของการสร้าง ความบกพร่องแบบมุมเชิงบวกทำให้ภาพจุดยอดสามารถ พับ ได้ในมิติที่สูงกว่าและวนกลับมาหาตัวเองกลายเป็นพอลิโทป ความบกพร่องแบบมุมเชิงศูนย์จะปูรูปทรงจนเต็มปริภูมิในมิติเดียวกันเป็นแฟซิต ส่วนความบกพร่องแบบมุมเชิงลบไม่สามารถเกิดขึ้นได้ในปริภูมิธรรมดา แต่สามารถสร้างได้ในปริภูมิเชิงไฮเพอร์โบลา

ภาพจุดยอดโดยปกติจะถูกมองว่าเป็นพอลิโทปที่มีขอบเขตจำกัด แต่บางครั้งก็สามารถพิจารณาว่าเป็นเทสเซลเลชันโดยตัวมันเอง

พอลิโทปปรกติรูปทรงหนึ่งจะมีพอลิโทปคู่กัน (dual polytope) อีกรูปทรงหนึ่ง ซึ่งเขียนแทนด้วยสัญลักษณ์ชเลฟลีในลำดับย้อนกลับ พอลิโทปปรกติคู่กันในตัว (self-dual) จะมีสัญลักษณ์ชเลฟลีแบบสมมาตร นั่นคือดัชนีในลำดับย้อนกลับก็ยังคงเดิม

กรุปสมมาตร[แก้]

สัญลักษณ์ชเลฟลีมีความเกี่ยวข้องอย่างใกล้ชิดกับกรุปสมมาตรการสะท้อน หรือเรียกว่าค็อกซีเตอร์กรุป (Coxeter group) โดยใช้เลขดัชนีเหมือนกันแต่ใช้วงเล็บเหลี่ยมแทนเป็นรูปแบบ [p, q, r, …] กรุปเช่นนี้มักจะถูกตั้งชื่อตามพอลิโทปปรกติที่มันสร้างขึ้นมา ตัวอย่างเช่น [3, 3] คือค็อกซีเตอร์กรุปสำหรับสมมาตรเชิงทรงสี่หน้า (tetrahedral symmetry), [3, 4] คือสมมาตรเชิงทรงแปดหน้า (octahedral symmetry) และ [3, 5] คือสมมาตรเชิงทรงยี่สิบหน้า (icosahedral symmetry) เป็นต้น

พอลิโทปปริซึมเอกรูป[แก้]

พอลิโทปปริซึมเอกรูปสามารถนิยามและตั้งชื่อได้ด้วยผลคูณคาร์ทีเซียนของพอลิโทปปรกติในมิติที่ต่ำกว่า ดังนี้

  • ปริซึม p เหลี่ยม ซึ่งมีภาพจุดยอดเป็น p.4.4 เขียนแทนด้วย { } × {p}, สัญลักษณ์ { } หมายถึงเส้นตรงหนึ่งหน่วย
  • ปริซึมเอกรูปที่มีหน้าเป็น {p, q} เขียนแทนด้วย { } × {p, q}
  • ดูโอปริซึม p-q เขียนแทนด้วย {p} × {q}

สัญลักษณ์ชเลฟลีส่วนขยาย[แก้]

ค็อกซีเตอร์ได้ขยายแนวคิดของสัญลักษณ์ชเลฟลีออกไปเพื่อใช้กับทรงหลายหน้าเสมือนปรกติ (quasiregular polyhedron) โดยเพิ่มมิติตามแนวดิ่งลงในสัญลักษณ์ เป็นจุดเริ่มต้นสู่แผนภาพค็อกซีเตอร์-ดืยน์กิน (Coxeter-Dynkin diagram) ที่มีนัยทั่วไปมากขึ้น

รูปแบบ สัญลักษณ์ชเลฟลีส่วนขยาย สัญกรณ์ที แผนภาพค็อกซีเตอร์-ดืยน์กิน
ทรงหลายหน้าปรกติ \begin{Bmatrix} p , q \end{Bmatrix} t_0\{p,q\} CDel node 1.pngCDel p.pngCDel node.pngCDel q.pngCDel node.png
ทรงหลายหน้าเสมือนปรกติ \begin{Bmatrix} p \\ q \end{Bmatrix} t_1\{p,q\} CDel node.pngCDel p.pngCDel node 1.pngCDel q.pngCDel node.png
ทรงหลายหน้าปรกติคู่กัน \begin{Bmatrix} q , p \end{Bmatrix} t_2\{p,q\} CDel node.pngCDel p.pngCDel node.pngCDel q.pngCDel node 1.png

และสำหรับพอลิโทปสี่มิติปลายตัดครึ่งด้าน (rectified 4-polytope) ก็จะเป็นเช่นนี้

รูปแบบ สัญลักษณ์ชเลฟลีส่วนขยาย สัญกรณ์ที แผนภาพค็อกซีเตอร์-ดืยน์กิน
ทรงหลายห้องปรกติ \begin{Bmatrix} p, q , r \end{Bmatrix} t_0\{p,q,r\} CDel node 1.pngCDel p.pngCDel node.pngCDel q.pngCDel node.pngCDel r.pngCDel node.png
ทรงหลายห้องปลายตัดครึ่งด้าน \begin{Bmatrix} p \\ q , r \end{Bmatrix} t_1\{p,q,r\} CDel node.pngCDel p.pngCDel node 1.pngCDel q.pngCDel node.pngCDel r.pngCDel node.png
ทรงหลายห้องปลายตัดครึ่งด้านคู่กัน \begin{Bmatrix} q , p \\ r \end{Bmatrix} t_2\{p,q,r\} CDel node.pngCDel p.pngCDel node.pngCDel q.pngCDel node 1.pngCDel r.pngCDel node.png
ทรงหลายห้องปรกติคู่กัน \begin{Bmatrix} r, q , p \end{Bmatrix} t_3\{p,q,r\} CDel node.pngCDel p.pngCDel node.pngCDel q.pngCDel node.pngCDel r.pngCDel node 1.png

อ้างอิง[แก้]

แหล่งข้อมูลอื่น[แก้]