ลอการิทึม

จากวิกิพีเดีย สารานุกรมเสรี
กราฟของฟังก์ชันลอการิทึมในฐานต่าง ๆ สีแดงคือฐาน e สีเขียวคือฐาน 10 สีม่วงคือฐาน 1.7 กราฟทุกเส้นผ่านจุด (1, 0) เนื่องจากจำนวนใด ๆ ที่ไม่เป็นศูนย์ เมื่อยกกำลัง 0 แล้วได้ 1 และกราฟทุกเส้นผ่านจุด (b, 1) สำหรับฐาน b เพราะว่าจำนวนใด ๆ ยกกำลัง 1 แล้วได้ค่าเดิม เส้นโค้งทางซ้ายเข้าใกล้แกน y แต่ไม่ตัดกับแกน y เพราะมีภาวะเอกฐานอยู่ที่ x = 0 (เส้นกำกับในแนวดิ่ง)

ลอการิทึม (อังกฤษ: logarithm) เป็นการดำเนินการทางคณิตศาสตร์ที่เป็นฟังก์ชันผกผันของฟังก์ชันเลขชี้กำลัง ค่าลอการิทึมของจำนวนหนึ่งโดยกำหนดฐานไว้ให้ จะมีค่าเทียบเท่ากับ การเอาฐานมายกกำลังค่าลอการิทึม ซึ่งจะให้คำตอบเป็นจำนวนนั้น ตัวอย่างเช่น

  • ลอการิทึมของ 1000 ในฐาน 10 มีค่าเป็น 3 เพราะว่า 10 คูณกัน 3 ตัวแล้วได้ 1000 นั่นคือ 10 × 10 × 10 = 1000
  • ลอการิทึมของ 32 ในฐาน 2 มีค่าเป็น 5 เพราะว่า 2 คูณกัน 5 ตัวแล้วได้ 32 นั่นคือ 2 × 2 × 2 × 2 × 2 = 32

ถ้าเขียนด้วยสัญลักษณ์ยกกำลังจะได้ว่า

  • 103 = 1000 ดังนั้น log10 1000 = 3
  • 25 = 32 ดังนั้น log2 32 = 5

ลอการิทึมของ x ในฐาน b เขียนแทนด้วย logb x หรือถ้าฐานมีค่าใด ๆ เป็นปริยาย จะเขียนเพียงแค่ log x (ไม่จำเป็นต้องใส่วงเล็บรอบ x) ดังนั้นสำหรับจำนวน x ฐาน b และเลขชี้กำลัง y ที่สามารถเป็นไปได้

x = b^y \,\Rarr\, y = \log_b x\!

คุณลักษณะหนึ่งที่สำคัญของลอการิทึมคือการลดทอนการคูณไปเป็นการบวกดังนี้

\log xy = \log x + \log y\!

หมายความว่า ลอการิทึมของผลคูณของสองจำนวน จะเท่ากับผลรวมของลอการิทึมของแต่ละจำนวน การใช้ลอการิทึมเพื่อลดทอนการคำนวณที่ซับซ้อนเป็นหนึ่งในแรงผลักดันอย่างมีนัยสำคัญในการพัฒนาที่มีมาแต่เดิม มีการใช้งานลอการิทึมอย่างกว้างขวางทั้งในงานสถิติศาสตร์ เคมี ฟิสิกส์ ดาราศาสตร์ วิทยาการคอมพิวเตอร์ เศรษฐศาสตร์ ดนตรี และวิศวกรรมศาสตร์

สมบัติ[แก้]

เมื่อ x และ b ถูกกำหนดให้เป็นจำนวนจริงบวก logb x จะให้ผลเป็นจำนวนจริงเพียงหนึ่งเดียว ขนาดหรือค่าสัมบูรณ์ของจำนวนเชิงซ้อนของฐาน b จะต้องไม่เป็น 0 หรือ 1 แต่โดยทั่วไปฐานของลอการิทึมจะเป็น 10, e หรือ 2 มีการนิยามลอการิทึมสำหรับทั้งจำนวนจริงและจำนวนเชิงซ้อนด้วย [1][2]

สมบัติหลักของลอการิทึมคือการลดทอนการคูณไปเป็นการบวก ซึ่งพัฒนาจากเอกลักษณ์ของการยกกำลัง

b^x \times b^y = b^{x+y}\!

เมื่อใส่ลอการิทึมเข้าไปจะได้ว่า

\log_b \left( b^x \times b^y \right) = \log_b b^{x+y} = x + y = \log_b b^x + \log_b b^y\!

ตัวอย่างเช่น

4 = 2^2 \,\Rarr\, \log_2 4 = 2\!
8 = 2^3 \,\Rarr\, \log_2 8 = 3\!
\log_2 32 = \log_2 (4 \times 8) = \log_2 4 + \log_2 8 = 2 + 3 = 5\!

สมบัติที่เกี่ยวข้องคือการลดรูปยกกำลังไปเป็นการคูณ โดยใช้เอกลักษณ์นี้

c = b^{\log_b c}

ซึ่งเมื่อนำ c ไปยกกำลัง p จะได้ว่า

c^p = \left( b^{\log_b c} \right)^p = b^{p \log_b c}

กล่าวโดยนัยได้ว่า การหาค่าจำนวนหนึ่งที่ยกกำลัง p ก่อนอื่นให้หาค่าลอการิทึมฐาน b ของจำนวนนั้นแล้วคูณด้วย p แล้วใส่ผลคูณเป็นเลขชี้กำลังกลับไปยังฐาน b นั่นคือ จำนวนที่ยกกำลัง = b (ผลคูณ)

หรือใส่ลอการิทึมเข้าไปจะได้ว่า

\log_b c^p = p \log_b c\!

ตัวอย่างเช่น

\log_2 64 = \log_2 4^3 = 3 \log_2 4 = 6\!

นอกจากการลดรูปการคูณเป็นการบวก และการยกกำลังเป็นการคูณแล้ว ลอการิทึมยังสามารถลดรูปการหารเป็นการลบ และรากเป็นการหาร เช่น

\log_2 16 = \log_2 \tfrac{64}{4} = \log_2 64 - \log_2 4 = 6 - 2 = 4
\log_2 \sqrt[3]4 = \tfrac{1}{3} \log_2 4 = \tfrac{2}{3}

ลอการิทึมทำการดำเนินการทางคณิตศาสตร์อันยืดยาวให้คำนวณง่ายขึ้นโดยการแปลงเป็นการคูณหรือการบวก สำหรับการคำนวณด้วยมือโดยประมาณ สามารถทำได้โดยการเทียบค่าจากตารางลอการิทึม หรือใช้สไลด์รูล สำหรับลอการิทึมสามัญ มีสมบัติหนึ่งที่ปรากฏในการใช้ตารางที่ว่า ลำดับตัวเลขใด ๆ ที่มีค่าเดียวกัน แต่มีค่าประจำหลักต่างกัน จะยังคงให้ แมนทิสซา (mantissa) ค่าเดียวกัน และต่างกันเพียงแค่ แคแรกเทอริสติก (characteristic)

ฟังก์ชันลอการิทึม[แก้]

สารานุกรมบริตานิกา ค.ศ. 1797 ให้ความหมายลอการิทึมว่า "ชุดของจำนวนในการก้าวหน้าเลขคณิต ซึ่งสอดคล้องกับการก้าวหน้าเรขาคณิต นั่นหมายความว่า การคำนวณเลขคณิตสามารถทำให้ง่ายและรวดเร็วมากขึ้นกว่าวิธีอื่น"

ถึงแม้ว่าลอการิทึมเป็นแนวคิดดั้งเดิมของลำดับเลขคณิตของจำนวน ที่สอดคล้องกับลำดับเรขาคณิตของจำนวนอื่น (จำนวนจริงบวก) ดังเช่นที่ให้ความหมายไว้ในสารานุกรมบริตานิกา ค.ศ. 1797 ลอการิทึมยังเป็นผลลัพธ์จากการใช้ฟังก์ชันวิเคราะห์ ฟังก์ชันนั้นสามารถมีความหมายที่ขยายออกไปบนจำนวนเชิงซ้อนได้

ค่าของฟังก์ชัน logb x ขึ้นอยู่กับ b และ x ทั้งสองตัว แต่สำหรับฟังก์ชันลอการิทึมในการใช้งานตามปกติคือฟังก์ชันที่อยู่ในรูปแบบ logb (x) โดยที่ฐาน b เป็นค่าเดียวคงที่ (ซึ่งต้องเป็นจำนวนบวกและไม่เท่ากับ 1) และมี x เป็นอาร์กิวเมนต์เท่านั้น ด้วยเหตุนี้จึงทำให้ฟังก์ชันลอการิทึมของแต่ละค่าบนฐาน b ให้ผลลัพธ์เพียงค่าเดียว ด้วยมุมมองนี้จึงทำให้ฟังก์ชันลอการิทึมฐาน b เป็นฟังก์ชันผกผันของฟังก์ชันเลขชี้กำลัง bx บ่อยครั้งที่คำว่า "ลอการิทึม" หมายถึงฟังก์ชันลอการิทึมโดยตัวมันเองหรือหมายถึงค่าที่ออกมาจากฟังก์ชัน

ลอการิทึมของจำนวนลบหรือจำนวนเชิงซ้อน[แก้]

ดูบทความหลักที่: ลอการิทึมเชิงซ้อน

มีเพียงจำนวนจริงบวกเท่านั้นที่ให้ผลลัพธ์ของลอการิทึมเป็นจำนวนจริง ฟังก์ชันลอการิทึมสามารถขยายไปได้บนจำนวนเชิงซ้อน ซึ่งครอบคลุมจำนวนลบด้วย และให้ผลเป็นจำนวนเชิงซ้อน แต่ค่าของมันอาจมีมากกว่าหนึ่ง ตัวอย่างเช่น e2πi = e0 = 1 ซึ่งจะทำให้ลอการิทึมฐาน e ของ 1 มีผลลัพธ์เป็นทั้ง 2πi และ 0

เมื่อ z เป็นจำนวนเชิงซ้อนจำนวนหนึ่งซึ่งเขียนได้ในรูปแบบ x + iy โดยที่ x และ y เป็นจำนวนจริง ลอการิทึมของ z สามารถหาได้จากการแปลงเป็นรูปแบบเชิงขั้ว นั่นคือ

z = r \mathrm{e}^{i \theta} = r (\cos \theta + i \sin \theta)\!

โดยที่ r และ θ มาจาก

r = |z| = \sqrt{x^2 + y^2}
\theta = \arg (z)\! คือมุมใดก็ได้ที่ทำให้ x = r cos θ และ y = r sin θ ซึ่งอาจมีมากกว่าหนึ่งค่า

ถ้าฐานของลอการิทึมถูกเลือกเป็นค่า e นั่นคือใช้ loge หรือ ln อันหมายถึงลอการิทึมธรรมชาติ ดังนั้นลอการิทึมเชิงซ้อนของ z คำนวณได้ดังนี้

\log (z) = \ln |z| + i \arg (z) = \ln r + i (\theta + 2 \pi k)\!

แต่เนื่องจาก arg เป็นฟังก์ชันที่มีผลลัพธ์หลายค่า ดังนั้นจึงมีการนิยามฟังก์ชันใหม่ของลอการิทึมคือ Log (ขึ้นต้นอักษรตัวใหญ่) ซึ่งจะให้ค่าเพียงค่าเดียวดังนี้

\operatorname{Log} (z) = \ln |z| + i \operatorname{Arg} (z) = \ln r + i \varphi\!

โดยที่ φ จะให้ค่าเพียงค่าเดียวในช่วง (−π, π] ซึ่งมีความหมายเหมือนกับ φθ (mod 2π) และ Arg คือฟังก์ชันที่ให้ค่ามุมเพียงค่าเดียวในช่วงดังกล่าว ซึ่งเป็นการนิยามเพิ่มเติมจากฟังก์ชัน arg ฟังก์ชัน Arg นี้เมื่อใช้กับจำนวนจริงจะคืนค่าเป็น 0 ออกมา ซึ่งส่งผลให้พจน์ที่เป็นจำนวนจินตภาพถูกตัดทิ้งไป เหลือแต่ลอการิทึมธรรมชาติของจำนวนจริงเท่านั้น

ลอการิทึมธรรมชาติของจำนวนจริงลบ r หาได้จากสูตร

\operatorname{Log} (r) = \ln |r| + i \pi\!

สำหรับลอการิทึมฐานอื่นที่ไม่ใช่ e ลอการิทึมเชิงซ้อน logb (z) สามารถนิยามได้จาก ln (z) / ln (b) ซึ่งแต่ละพจน์ได้นิยามวิธีการคำนวณไว้แล้ว

ในกรณีที่เป็นจำนวนเชิงซ้อน log zp อาจมีค่าไม่เท่ากับ p log z เสมอไป

ทฤษฎีสรุป[แก้]

จากมุมมองขั้นต้นทางคณิตศาสตร์ เอกลักษณ์นี้

\log cd = \log c + \log d\!

เป็นพื้นฐานของสองเรื่อง ประการแรกคือสมบัติเชิงเลขคณิตทั้งสามอาทิ สมบัติการสลับที่ การเปลี่ยนกลุ่ม การแจกแจง จะยังคงมีอยู่ ประการที่สองคือเอกลักษณ์นี้แสดงให้เห็นสมสัณฐาน (isomorphism) ระหว่างกรุปการคูณของจำนวนจริงบวกกับกรุปการบวกของจำนวนจริงทั้งหมด ฟังก์ชันลอการิทึมเท่านั้นที่เป็นสมสัณฐานอย่างต่อเนื่องระหว่างกรุปดังกล่าว

ฐาน[แก้]

ปกติแล้วฐานของลอการิทึมที่ใช้กันอย่างกว้างขวางได้แก่ 10, e ≈ 2.71828… และ 2 เมื่อเราเขียนว่า "log" โดยไม่ปรากฏฐาน (b ที่หายไปจาก logb) ความหมายของฐานที่ใช้ขึ้นอยู่กับบริบทดังนี้

เพื่อหลีกเลี่ยงความสับสนในการใช้ ควรระบุฐานลงไปด้วยเพื่อไม่ให้เกิดความเข้าใจผิด

สัญกรณ์ของฐานและฐานโดยนัย[แก้]

บ่อยครั้งที่ฐานไม่ได้ระบุไว้อย่างชัดเจนในสัญกรณ์ log (x) ซึ่งในแต่ละสาขาวิชาก็มีธรรมเนียมการใช้ต่างกัน เราสามารถเข้าใจได้โดยนัยในสาขาวิชาหรือภาวะแวดล้อมนั้น

  • นักคณิตศาสตร์กำหนดให้ log (x) หมายถึงลอการิทึมธรรมชาติ loge (x)
  • วิศวกร นักชีววิทยา และนักดาราศาสตร์กำหนดให้ log (x) หมายถึงลอการิทึมสามัญ log10 (x)
  • นักวิทยาการคอมพิวเตอร์กำหนดให้ log (x) หมายถึงลอการิทึมฐานสอง log2 (x)
  • บนเครื่องคิดเลขวิทยาศาสตร์ ปุ่ม "log" หมายถึง log10 (x) และปุ่ม "ln" หมายถึง loge (x)
  • ในภาษาโปรแกรมของคอมพิวเตอร์ที่ใช้งานอย่างแพร่หลาย [3] ฟังก์ชัน "log" จะคืนค่าเป็นลอการิทึมธรรมชาติ

มาตรฐานที่ต่างกันเกิดขึ้นจากสมบัติที่ต่างกันอันเป็นที่นิยมใช้ในสาขาวิชานั้น ตัวอย่างเช่น ลอการิทึมธรรมชาติมีสมบัติหลายอย่างที่เป็น "ธรรมชาติ" (เช่นอนุพันธ์ของมันเท่ากับ 1/x เป็นต้น) ทำให้เป็นที่น่าสนใจของนักคณิตศาสตร์ ในขณะที่เราเขียนจำนวนต่าง ๆ เป็นเลขฐานสิบ การคิดเลขในใจจึงง่ายขึ้นด้วยลอการิทึมสามัญ และเป็นที่น่าสนใจของวิศวกร และสุดท้าย คอมพิวเตอร์เก็บข้อมูลในหน่วยพื้นฐานเป็นบิต เทียบได้กับเลขฐานสอง เราสามารถทราบว่าจำนวนเต็ม n ใช้เนื้อที่เก็บกี่บิตอย่างคร่าว ๆ โดยใช้ลอการิทึมฐานสอง log2 (n) นอกจากนั้นการค้นหาแบบทวิภาคในรายการที่มีขนาด n จะสามารถทำการค้นหาภายใน log2 (n) ขั้นตอน สมบัติเช่นนี้ปรากฏซ้ำ ๆ ในวิทยาการคอมพิวเตอร์และทำให้ลอการิทึมฐานสองเป็นที่นิยมในสาขานี้ เป็นต้น

บ่อยครั้งที่ประเทศในแถบยุโรปใช้สัญกรณ์นี้ blog (x) แทนที่จะเป็น logb (x) [4]

สัญกรณ์ ln[แก้]

ลอการิทึมธรรมชาติของ x เขียนได้อีกอย่างหนึ่งว่า ln (x) แทนที่จะเป็น loge (x) โดยเฉพาะในสาขาอื่นที่ไม่ใช่คณิตศาสตร์

อย่างไรก็ตามนักคณิตศาสตร์บางคนไม่ยอมรับการใช้สัญกรณ์นี้ อาทิ พอล ฮาลมอส (Paul Halmos) นักคณิตศาสตร์ชาวยิว ได้วิจารณ์ไว้ในอัตชีวประวัติของเขาเมื่อ ค.ศ. 1985 ว่า ln เป็น "สัญกรณ์แบบเด็ก ๆ" และเขายังกล่าวอีกด้วยว่าไม่มีนักคณิตศาสตร์คนไหนเคยใช้ [5] ข้อเท็จจริงคือสัญกรณ์นี้คิดค้นขึ้นโดย เออร์วิง สตริงแฮม (Irving Stringham) ศาสตราจารย์จากมหาวิทยาลัยแคลิฟอร์เนีย เบิร์กลีย์ เมื่อ ค.ศ. 1893 [6][7]

วิทยาการคอมพิวเตอร์[แก้]

ในวิทยาการคอมพิวเตอร์ ลอการิทึมฐานสองบางครั้งก็เขียนในรูปแบบ lg (x) ซึ่งเสนอโดย เอดเวิร์ด เรนโกลด์ (Edward Reingold) และทำให้แพร่หลายโดย โดนัลด์ คนูธ (Donald Knuth) อย่างไรก็ตามสัญกรณ์นี้ก็มีการใช้เป็นลอการิทึมสามัญ และใช้ lb (x) สำหรับลอการิทึมฐานสองแทน [8] ในตำราของรัสเซีย สัญกรณ์ lg (x) มีการใช้แทนลอการิทึมฐานสิบโดยทั่วไป [9] รวมทั้งในเยอรมนี ในขณะที่ ld (x) หรือ lb (x) ใช้เป็นลอการิทึมฐานสอง ภาษาโปรแกรมพีแอล/วันใช้สัญกรณ์ log2 (x) สำหรับลอการิทึมฐานสอง

ฐาน b ของฟังก์ชันลอการิทึมที่ทำงานเกี่ยวกับการเขียนโปรแกรม ถูกละทิ้งหรือทำให้ไม่ทราบค่า เพื่อความสะดวกต่อการใช้ในการเปลี่ยนฐาน ซึ่งเป็นเอกลักษณ์อย่างหนึ่งสำหรับการคำนวณฐานใด ๆ ไปเป็นลอการิทึมฐาน r ของ x ดังนี้

\log_r(x) = \frac{\log_b(x)}{\log_b(r)} สำหรับฐาน b ใด ๆ หรือเขียนเพียงแค่ \log_r(x) = \frac{\log(x)}{\log(r)}

ฐาน b ของฟังก์ชันลอการิทึมสามารถกำหนดโดยเจาะจงลงไปได้ เช่นการคำนวณความผิดพลาดของความคลาดเคลื่อน ด้วยเอกลักษณ์ต่อไปนี้

b = n^\frac{1}{\log_{b}(n)} หรือเขียนเพียงแค่ \text{base} = n^\frac{1}{\log(n)} สำหรับค่า n ใด ๆ ที่เหมาะสม

การแนะนำและมาตรฐาน[แก้]

สถาบันมาตรฐานและเทคโนโลยีแห่งชาติ กระทรวงพาณิชย์สหรัฐอเมริกา ได้แนะนำไว้ว่าควรปฏิบัติตามมาตรฐานไอเอสโอเรื่อง ISO 31-11:1992 เครื่องหมายและสัญลักษณ์ทางคณิตศาสตร์สำหรับใช้ในวิทยาศาสตร์กายภาพและเทคโนโลยี ซึ่งได้แนะนำสัญกรณ์ไว้สามแบบดังนี้ [10]

  • สัญกรณ์ ln (x) หมายถึง loge (x)
  • สัญกรณ์ lg (x) หมายถึง log10 (x)
  • สัญกรณ์ lb (x) หมายถึง log2 (x)

ดูเพิ่ม[แก้]

อ้างอิง[แก้]

  1. กรณีทั่วไป x และ b สามารถเป็นจำนวนเชิงซ้อนได้ทั้งคู่ ดูเพิ่มในหนังสืออ้างอิงของ Kwok และบทความลอการิทึมเชิงซ้อน
  2. Yue Kuen Kwok (2002). Applied complex variables for scientists and engineers. Cambridge MA: Cambridge University Press. p. 102. ISBN 0521004624. 
  3. เช่นภาษาซี ภาษาซีพลัสพลัส ภาษาจาวา ภาษาแฮสเคลล์ ภาษาฟอร์แทรน ภาษาไพทอน ภาษารูบี และภาษาเบสิก
  4. ""Mathematisches Lexikon" at Mateh_online.at". 
  5. Paul Halmos (1985). I Want to Be a Mathematician: An Automathography. Springer-Verlag. ISBN 978-0387960784. 
  6. Irving Stringham (1893). Uniplanar algebra: being part I of a propædeutic to the higher mathematical analysis. The Berkeley Press. p. xiii. 
  7. Roy S. Freedman (2006). Introduction to Financial Technology. Academic Press. p. 59. ISBN 9780123704788. 
  8. Gullberg, Jan (1997). Mathematics: from the birth of numbers. W. W. Norton & Co. ISBN 039304002X. 
  9. ""Common Logarithm" at MathWorld". 
  10. B. N. Taylor (1995). "Guide for the Use of the International System of Units (SI)". NIST Special Publication 811, 1995 Edition. US Department of Commerce. 

แหล่งข้อมูลอื่น[แก้]