มหานวดารา

จากวิกิพีเดีย สารานุกรมเสรี
(เปลี่ยนทางจาก ซูเปอร์โนวาประเภท II)
ภาพจำลองจากศิลปินแสดงให้เห็นมหานวดารา SN 2006gy ที่กล้องโทรทรรศน์อวกาศรังสีเอกซ์จันทราจับภาพได้ อยู่ห่างจากโลก 240 ล้านปีแสง

มหานวดารา[1] หรือ ซูเปอร์โนวา (อังกฤษ: supernova) เป็นหนึ่งในเหตุการณ์ระเบิดที่มีพลังมากที่สุดที่รู้จัก นั่นคือเป็นการระเบิดของดาวฤกษ์มวลมากเมื่อสิ้นอายุขัยแล้ว จะเปล่งแสงสว่างมหาศาลและระเบิดออกรัศมีสว่างวาบเป็นรัศมีเพียงชั่วครู่ ก่อนจะเลือนจางลงในเวลาสัปดาห์หรือเดือนเท่านั้น

ระหว่างช่วงเวลาสั้น ๆ ที่เกิดมหานวดารานี้ มันจะปลดปล่อยพลังงานมหาศาลขนาดเท่ากับพลังงานของดวงอาทิตย์ดวงหนึ่งสามารถปลดปล่อยได้ทั้งชีวิตทีเดียว การระเบิดจะขับไล่ดวงดาวและวัตถุต่าง ๆ ที่อยู่ใกล้ให้กระเด็นออกไปไกลด้วยความเร็ว 10% ของความเร็วแสง (30,000 กิโลเมตร/วินาที) และเกิดคลื่นกระแทกแผ่ออกไปโดยรอบตรงช่องว่างระหว่างดวงดาว การกระแทกนี้ได้กวาดเหล่าแก๊สและฝุ่นละอองออกไปอย่างรวดเร็ว เรียกปรากฏการณ์นี้ว่าการเกิดซากมหานวดารา

แต่ละประเภทของมหานวดารา ที่ยังปรากฏให้เห็นอยู่ แบ่งได้เป็น 2 ประเภท ซึ่งเกิดพลังงานที่เกิดจากแกนกลางของดาวมวลมากที่มีอายุมากที่เริ่มสร้างพลังงานจากนิวเคลียร์ฟิวชัน ที่อยู่ภายใต้แรงโน้มถ่วงที่อาจจะนำไปสู่การยุบตัวของดาวฤกษ์ จนอาจกลายเป็นดาวนิวตรอนหรือไม่ก็หลุมดำ การปลดปล่อยพลังงานศักย์โน้มถ่วง ทำให้เกิดทั้งความร้อนและสาดผิวชั้นนอกของดวงดาวให้กระเด็นออกไป ในทางกลับกันถ้าดาวแคระขาวที่สะสมสสารจากดาวฤกษ์ข้างเคียง หรือที่เรียกว่าระบบดาวคู่ (binary star system) ซึ่งเป็นการเพิ่มอุณหภูมิของแกนกลางจนกระทั่งเกิดปฏิกิริยานิวเคลียร์ฟิวชันถึงระดับของธาตุคาร์บอน แกนกลางของดาวฤกษ์ที่ร้อนระอุซึ่งจะอยู่ในสภาวะยุบตัวเนื่องจากมีมวลเกินค่าขีดจำกัดจันทรเศขร (Chandrasekhar limit) ซึ่งมีค่าประมาณ 1.38 เท่าของดวงอาทิตย์ เกิดเป็นมหานวดาราประเภท 1a (Type Ia Supernovae) แต่ว่าดาวแคระขาวจะแตกต่างตรงที่มีการระเบิดที่เล็กกว่าโดยใช้เชื้อเพลิงจากไฮโดรเจนที่ผิวของมัน เรียกว่า โนวาดาวที่มีมวลน้อย (ประมาณไม่ถึงเก้าเท่าของดวงอาทิตย์) เช่นดวงอาทิตย์ของเรา จะวิวัฒน์ไปเป็นดาวแคระขาวโดยปราศจากการเกิดมหานวดารา

ประเภทของมหานวดาราที่เราคุ้นเคยที่สุดก็คือ มหานวดาราประเภท 2 (Type II Supernovae) เกิดจากการสิ้นสุดวงจรชีวิตของดาวฤกษ์ ที่มีขนาดยักษ์กว่าดวงอาทิตย์ของเรา โดยการระเบิดจะเกิดขึ้นอย่างรุนแรงและรวดเร็ว เมื่อเชื้อเพลิงนิวเคลียร์ในแกนกลางของดาวฤกษ์หมดลง แรงดันที่เกิดจากอิเล็กตรอนผลักกันก็จะหายไป ดาวฤกษ์จะยุบตัวลงเนื่องจากแรงโน้มถ่วงอะตอมธาตุในแกนกลางดาวฤกษ์บีบอัดตัวจนชนะแรงผลักจากประจุ อะตอมจึงแตกออกเหลือแต่นิวตรอนอัดตัวกันแน่นแทน เปลือกดาวชั้นนอก ๆ ที่บีบอัดตามเข้ามาจะกระแทกกับแรงดันจากนิวตรอน จนกระดอนกลับและระเบิดกลายเป็นมหานวดารา วัสดุสารจากการระเบิดมหานวดาราจะเคลื่อนที่ด้วยความเร็วเกือบเท่าความเร็วแสง ที่ใจกลางของมหานวดาราจะมีก้อนนิวตรอนซึ่งจะเรียกว่า ดาวนิวตรอน

โดยเฉลี่ยแล้ว มหานวดาราจะเกิดประมาณห้าสิบปีครั้งหนึ่งในดาราจักรที่มีขนาดเท่า ๆ กับทางช้างเผือกของเรา มีบทบาทสำคัญกับการเพิ่มมวลให้กับมวลสารระหว่างดวงดาว นอกจากนั้น การแผ่กระจายของคลื่นกระแทกจากการระเบิดของมหานวดาราสามารถก่อให้เกิดดวงดาวใหม่ๆได้มากมาย

คำว่า “โนวา” มาจากภาษาลาติน แปลว่าใหม่ หมายถึงการเกิดใหม่ของดวงดาวใหม่ที่ส่องแสงสว่างในท้องฟ้า ส่วนคำว่า “ซูเปอร์” จำแนกมหานวดาราออกจาก โนวา ธรรมดา ต่างกันที่ความสว่างที่สว่างกว่า ขนาดและทางกลที่ต่างกันด้วย คำว่ามหานวดาราใช้ครั้งแรกในหนังสือ Merriam-Webster's Collegiate Dictionary ตีพิมพ์เมื่อปี 1926

ประวัติศาสตร์การค้นพบ[แก้]

ครั้งแรกที่ทำการบันทึกการเกิดมหานวดารา คือ SN 185 ค้นพบโดยนักดาราศาสตร์ชาวจีน ในปี ค.ศ.185 มหานวดาราที่สว่างที่สุดเท่าที่เคยบันทึกคือ SN 1006 อธิบายรายละเอียดโดยนักดาราศาสตร์ชาวจีนและอาหรับ มหานวดาราที่สังเกตง่ายอีกอันหนึ่งคือ SN 1054 หรือ เนบิวลารูปปู มหานวดาราที่ค้นพบทีหลังด้วยสายตาคือ SN 1572 และ SN 1604 ซึ่งอยู่ในดาราจักรทางช้างเผือก ถูกบันทึกว่ามีผลกระทบต่อการพัฒนาทางดาราศาสตร์ ในยุโรป เพราะพวกเขาใช้เป็นข้อถกเถียงกับความคิดของอริสโตเติล ที่กล่าวว่า “จักรวาลที่อยู่นอกเหนือจากดวงจันทร์และดาวเคราะห์ ไม่มีอยู่จริง”

หลังจากมีการพัฒนากล้องดูดาวจึงสามารถค้นพบมหานวดาราได้จากดาราจักรอื่น ๆ ได้ เริ่มจากปี 1885 การสังเกตมหานวดารา S Andromedae ในดาราจักรแอนโดรเมดา มหานวดาราก่อให้เกิดความรู้ที่สำคัญด้านจักรวาลวิทยา ในช่วงศตวรรษที่ยี่สิบ แบบจำลองแบบต่าง ๆ ของมหานวดาราถูกพัฒนามากขึ้น และทำให้นักวิทยาศาสตร์เข้าใจวงจรชีวิตของดาวของดวงดาวได้มากขึ้นด้วย มหานวดาราที่อยู่ห่างไกลซึ่งถูกค้นพบเร็ว ๆ นี้ พร่ามัวมากกว่าที่คาดเอาไว้ ซึ่งเป็นหลักฐานว่า จักรวาลอาจมีการขยายตัวด้วยความเร่ง

7 พฤษภาคม 2550 มีรายงานการค้นพบมหานวดาราที่สว่างที่สุด เอสเอ็น 2006 จีวาย (SN2006gy) ในดาราจักร เอ็นจีซี 1260 (NGC 1260) เป็นการดับสลายของดาวฤกษ์ที่มีมวลมากกว่าดวงอาทิตย์ถึง 150 เท่า มีช่วงสูงสุดของการระเบิดยาวนานถึง 70 วันต่างจากมหานวดาราอื่น ๆ ที่มีช่วงสูงสุดเพียงแค่ 2 สัปดาห์ และมีความสว่างมากกว่าอีกหลายร้อยมหานวดาราที่นักดาราศาสตร์เคยสังเกตเห็น

การค้นหา[แก้]

เพราะว่ามหานวดาราเกิดขึ้นน้อยในดาราจักรของเรา เกิดทุก ๆ ห้าสิบปี การได้มาซึ่งตัวอย่างของการเกิดมหานวดารา ต้องศึกษามาจากการสังเกตหลาย ๆ ดาราจักร

แต่มหานวดาราในดาราจักรอื่น ๆ ไม่สามารถทำนายล่วงหน้าได้อย่างแม่นยำนัก แสงหรือการส่องสว่างจากการระเบิดของมหานวดาราทำให้นักดาราศาสตร์ใช้มหานวดาราเป็นเทียนมาตรฐาน เพื่อวัดใช้ระยะทางจากโลกถึงดาราจักรที่มีมหานวดาราปรากฏอยู่ นอกจากนี้นักเอกภพวิทยาซึ่งศึกษามหานวดาราประเภทนี้ยังบอกได้ว่าเอกภพของเรากำลังขยายตัวด้วยความเร่ง และยังมีความสำคัญมากในการค้นหามันก่อนที่มันจะเกิดการระเบิด นักดาราศาสตร์มือสมัครเล่นที่มีจำนวนมากกว่านักดาราศาสตร์มืออาชีพ มีบทบาทอย่างมากในการค้นพบมหานวดารา โดยทั่วไปจากการมองไปยังดาราจักรใกล้ ๆ ผ่านกล้องโทรทรรศน์แสง และเปรียบเทียบมันกับรูปที่เคยบันทึกไว้ก่อนหน้า

จนกระทั่งถึงปลายศตวรรษที่ยี่สิบ นักดาราศาสตร์หันมาใช้คอมพิวเตอร์ในการควบคุมกล้องโทรทรรศน์และซีซีดี ในการตามล่าค้นหามหานวดารา เมื่อสิ่งนี้เป็นที่นิยมสำหรับนักดาราศาสตร์มือสมัครเล่น จึงมีการติดตั้งเครื่องมืออย่าง Katzman Automatic Imaging Telescope (เป็นกล้องโทรทรรศน์ที่ถ่ายภาพได้) เป็นต้น เร็ว ๆ นี้ โปรเจกต์ที่ชื่อว่า Supernova Early Warning System (SNEWS) เริ่มมีการใช้การตรวจจับนิวตริโนเป็นตัวช่วยในการค้นหามหานวดาราในดาราจักรทางช้างเผือก เพราะนิวตริโนเป็นอนุภาคที่ถูกผลิตขึ้นจากการระเบิดของมหานวดารา และไม่ถูกดูดกลืนโดยแก๊สและฝุ่นละอองต่าง ๆ ในระหว่างดวงดาวในดาราจักรนั้น

การค้นหามหานวดาราแบ่งออกเป็นสองกลุ่ม โดยจะให้ความสนใจเรื่องความสัมพันธ์ของสิ่งใกล้ ๆกัน กับการมองหาการระเบิดที่ไกลออกไป เพราะการระเบิดของจักรวาล ทำให้วัตถุต่าง ๆ ในจักรวาลเคลื่อนห่างออกจากกัน การถ่ายภาพสเปกตรัมของดาราจักรหลายสิบดวงจะพบว่า แสงจากดาราจักรเกือบทุกดาราจักรมีลักษณะการเลื่อนทางแดง นั่นคือวัตถุที่อยู่ไกลออกไปมากจะเคลื่อนที่ด้วยความเร็วสูงกว่าวัตถุที่อยู่ใกล้กว่าและเรียกได้ว่ามีการเลื่อนไปทางแดงสูงกว่า

การค้นหาการเลื่อนแดงสูงจะช่วยในการจับสังเกตมหานวดารา และสามารถคำนวณหาระยะห่างและความเร็วเคลื่อนออกของมหานวดารานั้นได้ด้วย โดยการสังเกตว่าการเลื่อนแดงเลื่อนไปมากน้อยเพียงใด ความสัมพันธ์นี้อยู่ในกฎของฮับเบิล

การตั้งชื่อ[แก้]

มหานวดาราที่ค้นพบจะถูกรายงานไปให้ International Astronomical Union's Central Bureau for Astronomical Telegrams ทราบเพื่อตั้งชื่อ ชื่อจะใส่ปีที่ถูกค้นพบหลังชื่อที่เป็นอักษรหนึ่งหรือสองตัว มหานวดารายี่สิบหกอันแรกของปีถูกตั้งโดยใช้อักษร A ถึง Z เป็นอักษรตัวใหญ่ หลังจากนั้นอักษรตัวเล็กที่เป็นคู่จึงถูกใช้ตามมา เช่น aa, ab ประมาณนี้ นักดาราศาสตร์ทั้งมืออาชีพและมือสมัครเล่นต่างค้นหามหานวดาราได้มากถึงกว่าร้อยอันในหนึ่งปี (367 ในปี 2005, 551 ในปี 2006, 572 ในปี 2007) ยกตัวอย่างเช่น มหานวดาราอันสุดท้ายที่ค้นพบในปี 2005 ชื่อว่า SN 2005nc ทำให้รู้ว่ามันเป็นมหานวดาราที่ค้นพบลำดับที่ 367 ในปี 2005 (nc ระบุว่าเป็นลำดับที่สามร้อยหกสิบเจ็ด)

ชื่อของมหานวดาราที่เคยบันทึกไว้โดยใช้การระบุปีที่ค้นพบได้แก่ SN 185, SN 1006, SN 1054, SN 1572 (Tycho's Nova) และ SN 1604 (Kepler's Star) ตั้งแต่ปี 1885 ตัวอักษรจึงได้ใช้ต่อท้ายปีนั้นด้วย เช่น SN 1885A, 1907A เป็นต้น โดยมหานวดาราอันสุดท้ายที่ค้นพบคือ SN 1947A โดยใช้ SN เป็นตัวขึ้นต้น

การจัดแบ่งประเภท[แก้]

ความพยายามที่จะทำความเข้าใจมหานวดาราอย่างถ่องแท้ ทำให้นักดาราศาสตร์ต้องมีการจัดแบ่งประเภทตามข้อกำหนดของ เส้นการดูดกลืนของความแตกต่างทางเคมีของธาตุซึ่งจะปรากฏในสเปคตราของมัน ธาตุแรกที่จะแบ่งคือการปรากฏหรือไม่ปรากฏของเส้นสเปคตรัมไฮโดรเจน ถ้าหาสเปคตรัมของมหานวดารามีเส้นของไฮโดรเจน (รู้จักในนามของ อนุกรมของบัลเมอร์ในส่วนหนึ่งของสเปกตรัมที่มองเห็นได้) มันถูกจัดไว้ใน Type II หรือประเภทที่สอง นอกจากนั้นก็เป็นประเภทที่หนึ่ง หรือ Type I ประเภทเหล่านี้ยังจำแนกเป็นซับดิวิชันได้อีก โดยจัดตามเส้นที่มีอยู่หรือปรากฏอยู่จริงจากธาตุต่าง ๆ และรูปร่างของเส้นโค้งแสง (light curve…เป็นกราฟของโชติมาตรปรากฏของมหานวดารากับเวลา)

Supernova taxonomy[2]
ประเภท ลักษณะ
Type I
Type Ia ไม่มีไฮโดรเจน และ แสดงลักษณะของ เส้นซิลิกอน (a singly-ionized silicon (Si II) line) ที่ 615.0 นาโนเมตร, ใกล้จุดพีคของแสง
Type Ib เกิดเส้น Non-ionized helium (He I) line ที่ 587.6 นาโนเมตร และ ลักษณะการดูดกลืนซิลิกอนไม่เด่นชัด ใกล้ 615 นาโนเมตร
Type Ic มีเส้นฮีเลียมน้อย หรือไม่มีเลย และลักษณะการดูดกลืนซิลิกอนไม่เด่นชัด ใกล้ 615 นาโนเมตร
Type II
Type IIP เส้นโค้งแสงแทบจะไม่ปรากฏ
Type IIL เป็นเส้นตรงลดลงในเส้นโค้งแสง (กราฟแมคนิจูดกับแสงเป็นเส้นตรง)

มหานวดาราประเภทที่สอง Type II จะเป็นซับดีวิชันอะไรนั้นขึ้นอยู่กับสเปคตราของมัน ในขณะที่ส่วนใหญ่แล้วมหานวดาราประเภทที่สองแสดงเส้นการแผ่รังสีค่อนข้างกว้าง ซึ่งบ่งชี้ถึงการกระจายตัวของความเร็วในค่าเป็นพันกิโลเมตรต่อวินาที บางอันแสดงความสัมพันธ์เฉพาะในช่วงแคบ เหล่านี้เรียกว่า Type IIn โดยตัว n คือ narrow หรือแคบ นั่นเอง

มหานวดาราส่วนน้อยอีกส่วนหนึ่ง เช่น SN 1987K and SN 1993J แสดงการเปลี่ยนประเภท คือมีการแสดงเส้นไฮโดรเจนในช่วงแรก ๆ แต่ว่า เมื่อผ่านไปเป็นสัปดาห์หรือเดือน เส้นที่เด่นจะเป็นเส้นฮีเลียม ประเภท IIb จะใช้อธิบายการรวมกันของ Type II และ Ib

แบบจำลองในปัจจุบัน[แก้]

โดยทั่วไปแล้ว มหานวดาราเกิดจากการระเบิดของดาวฤกษ์มวลมากเมื่อมันหมดอายุขัย ดาวฤกษ์เมื่อยังมีชีวิตจะประกอบไปด้วยก๊าซไฮโครเจนเป็นส่วนใหญ่ ก๊าซปริมาณมหาศาลรวมตัวจึงเกิดสนามแรงโน้มถ่วง ทำให้หดตัวเข้าสู่จุดศูนย์กลาง แต่แรงโน้มถ่วงเหล่านั้นก็ทำให้อะตอมอยู่ชิดกันและเสียดสีกันเกิดปฏิกิริยานิวเคลียร์ฟิวชัน (Fusion Nuclear Reaction) ซึ่งจะเปลี่ยนไฮโดรเจนรวมเป็นธาตุที่หนักกว่านั่นคือฮีเลียมและแผ่คลื่นแม่เหล็กไฟฟ้าทั้งความร้อนและแสงสว่างออกมา ถ้าหากว่าไม่มีอะไรหยุดยั้ง ปฏิกิริยาฟิวชันก็จะดำเนินไปจนเกิดธาตุหนักไปเรื่อย ๆ เช่น จากไฮโดรเจนรวมเป็นฮีเลียม คาร์บอน ออกซิเจน หลอมรวมกันจนผลสุดท้ายที่หนักที่สุดก็คือธาตุเหล็ก และจะสะสมธาตุหนักเหล่านี้ไว้ที่แกนกลางผิวนอกก็จะเป็นธาตุที่เบากว่า แต่มันเป็นไปไม่ได้ตลอดกาล เพราะเมื่ออะตอมมีการชิดกันขึ้น จะเกิดแรงดันที่เรียกว่า ความดันสถานะเสื่อมของอิเล็กตรอน อันเกิดจากการที่อิเล็กตรอนถูกบีบให้ชิดกันจนเกิดแรงผลักต่อกันเอง ช่องว่างระหว่างสสารย่อมน้อยลงจนถึงระดับที่อิเล็กตรอนเต็มช่องว่างเหล่านั้นหมดแล้ว อิเล็กตรอนที่อยู่ผิวนอกกว่าก็ไม่สามารถอัดเข้ามาได้อีก เป็นสภาพที่ไม่สามารถดันให้ปริมาตรเล็กลงได้อีก

ดาวฤกษ์จะอยู่ในสภาพนี้โดยไม่ยุบตัว จนกว่ามันจะเผาไฮโดรเจนหมดลงซึ่งทำความดันต้านแรงโน้มถ่วงไม่มีอีกต่อไป สำหรับดาวฤกษ์ที่มีมวลน้อยกว่า 1.38 เท่าของดวงอาทิตย์ ในขณะที่ยุบตัว แรงดันสภาพซ้อนสถานะของอิเล็กตรอนจะต้านทานการยุบตัวของดาวได้ทำให้มันกลายเป็นดาวแคระขาวและไม่เกิดมหานวดารา

แต่มันจะกลายเป็นมหานวดาราได้ ถ้าหากว่าดาวแคระขาวดวงนั้นเป็นระบบดาวคู่ และจะนำไปสู่มหานวดาราประเภท Ia ส่วนที่เหลือนั้นจะเป็นมหานวดาราที่เกิดจากดาวมวลมาก (massive star) ทั้งสิ้น ซึ่งจะเป็นประเภท Ib , Ic และ II

Type Ia[แก้]

เป็นการระเบิดภายในระบบเทหวัตถุคู่ที่ดวงหนึ่งเป็นดาวแคระขาวอีกดวงเป็นดาวฤกษ์ธรรมดาหรือไม่ก็เป็นดาวแคระขาวทั้งสองดวง เมื่อดาวแคระขาวดูดกลืนเอาก๊าซจากดาวฤกษ์อีกดวงจนกระทั่งกระตุ้นให้เกิดการระเบิดอย่างรุนแรง การดูดกลืนก็มีสองแบบดังนี้

แบบแรก มีระบบดาวคู่ ประกอบด้วยดาวฤกษ์ดวงใหญ่สองดวงมีการโคจรรอบกันเองซึ่งบางทีอาจจะแคบลงเรื่อย ๆ ทำให้ง่ายต่อการแชร์เปลือกนอกซึ่งกันและกัน และอาจจะพัฒนาตัวเป็นดาวยักษ์แดง ดวงหนึ่งจะใช้เชื้อเพลิงรอบตัวมันเองไปกับการจุดฟิวชัน มวลก็หายไปเรื่อย ๆ จนกระทั่งไม่สามารถเกิดฟิวชันได้อีก แล้วมันก็จะกลายเป็นดาวแคระขาวซึ่งประกอบด้วยธาตุคาร์บอนและออกซิเจน ดวงที่สองก็เผาผลาญตัวเองเช่นกันโดยใช้เชื้อเพลิงจากมวลสารของตัวมันเองและดูดมวลสารจากดาวเเคระขาวข้าง ๆ กัน เพิ่มมวลให้ตัวมันเองจนเป็นดาวยักษ์แดงจากนั้นจะพัฒนาเป็นมหานวดาราในที่สุด

แบบที่สอง เป็นการรวมตัวระหว่างดาวแคระขาวสองดวงที่อยู่ใกล้กัน บางทีอาจเป็นดาวคู่ซึ่งกันและกัน จนมีมวลมีค่ามากกว่าขีดจำกัดของจันทรเสกขา แล้วทำให้เกิดการระเบิดในลำดับต่อมา การระเบิดประเภทนี้ค่อนข้างจะให้ความสว่างคงที จึงใช้เป็นตัววัดระยะระหว่างกาแลคซีได้

มหานวดารา Type Ia,Ib,Ic ต่างกันตรงรายละเอียดในเส้นสเปกตรัม ซึ่งจะปรากฏต่างกันดังตารางข้างต้น แต่ล้วนเกิดจากดาวมวลมากทั้งสิ้น ซึ่งจะกล่าวในลำดับต่อไป

Type II[แก้]

จากที่ได้กล่าวไปข้างต้นว่าดาวฤกษ์ซึ่งเต็มไปด้วยไฮโดรเจนจะถูกจุดปฏิกิริยานิวเคลียร์ฟิวชันเมื่อมีอุณหภูมิและความดันสูงพอ แต่จะมีความดันดีเจนเนอเรซีของอิเล็กตรอนคอยดันไม่ให้ดาวยุบตัวต่อไปได้ หลังจากที่ดาวสะสมธาตุคาร์บอนไว้ที่แกนกลาง ดาวมวลน้อยจะไม่สามารถยุบตัวลงมากพอที่อุณหภูมิที่จะมีอุณหภูมิภายในเพียงพอสำหรับการจุดฟิวชันคาร์บอนและจบชีวิตลง ถ้าเป็นดาวมวลปานกลางก็จะจุดได้ ยุบตัวลงไปอีกชั้นหนึ่ง ประมาณ 600 ล้านเคลวิน แกนกลางเปลี่ยนจากคาร์บอนเป็นออกซิเจนและนีออน แต่ไม่สามารถลงไปถึง 1500 เคลวินสำหรับจุดฟิวชันนีออนได้ และมีความดันอิเล็กตรอนดีเจนเนอเรซียับยั้งการยุบตัวเอาไว้

แต่สำหรับดาวฤกษ์ที่มีมวลมากกว่า 8 เท่าของดวงอาทิตย์ไม่เป็นเช่นนั้น ดาวจะมีแรงโน้มถ่วงสูงมากจนความดันดีเจนเนอเรซีของอิเล็กตรอนไม่มีบทบาทเข้ามาขัดขวางการยุบตัวของดาวเลย เมื่อฮีเลียมที่แกนกลางหมดลง ดาวมวลมากจะยุบตัวจนแกนกลางมีอุณหภูมิสูงถึง 600 ล้านเคลวิน เพื่อจุดฟิวชันคาร์บอนได้อย่างง่ายดายในเวลาไม่เกิน 500 ปี คาร์บอนในแกนกลางก็จะถูกแทนที่ด้วยออกซิเจนที่เป็นขี้เถ้าของฟิวชันคาร์บอนไปจนหมดสิ้น ฟิวชันคาร์บอนที่แกนกลางหยุดลง ดาวจะยุบอัดตัวลงอีกจนมีอุณหภูมิสูงถึง 1,500 ล้านเคลวิน และจุดฟิวชันของนีออนและออกซิเจนต่อไปอย่างต่อเนื่อง ในขณะที่ฟิวชันออกซิเจถูกจุดขึ้นที่แกนกลาง ฟิวชันเปลือกคาร์บอน ฟิวชันเปลือกฮีเลียม และฟิวชันเปลือกไฮโดรเจนก็กำลังดำเนินต่อไปเช่นกัน จึงเรียกว่า การเกิดปฏิกิริยาฟิวชันเปลือกหลายชั้น (Multiple Shell Burning)

ฟิวชันในระยะท้าย ๆ ของดาวฤกษ์มวลมากเป็นการเกิดปฏิกิริยาฟิวชันที่มีความซับซ้อนมาก เมื่อธาตุใดที่แกนกลางหมดลง ดาวก็จะยุบตัวจนกว่าจะมีอุณหภูมิสูงมากพอที่จะจุดฟิวชันของธาตุหนักกว่าลำดับต่อไปได้ ชั้นเปลือกของฟิวชันของธาตุต่าง ๆ จึงเพิ่มขึ้นอย่างต่อเนื่องจนดาวมีชั้นฟิวชันหลายสิบชั้นซ้อนกันดูคล้ายหัวหอม ในขณะที่อุณหภูมิที่แกนกลางของดาวเพิ่มขึ้นถึงระดับหลายพันเคลวิน ธาตุที่หนักขึ้นเรื่อย ๆ ก็กำเนิดขึ้นในแกนกลาง จากคาร์บอน (6 โปรตอน) ออกซิเจน (6 โปรตอน) นีออน (10 โปรตอน).... เรื่อยไป

ดาวจะใช้เวลาเผาผลาญธาตุนั้นและเริ่มชั้นใหม่น้อยลงอย่างมาก ในชั้นท้าย ๆ ดาวจะใช้เวลาเผาผลาญเชื้อเพลิงหมดไปภายในไม่กี่วันเท่านั้น ซึ่งนับว่าสั้นมากเมื่อเทียบกับอายุหลายล้านปีของดาว แล้วในที่สุดธาตุก็รวมกันจนเกิดเป็นขี้เถ้าธาตุเหล็กในแกนกลาง ซึ่งเป็นธาตุที่ไม่สามารถจุดฟิวชันเป็นธาตุที่หนักกว่าได้

ชั้นเปลือกที่อยู่เหนือแกนเหล็กขึ้นไปต่างปล่อยขี้เถ้าเหล็กลงมาทับถมที่แกนกลาง ทำให้น้ำหนักของแกนกลางเพิ่มขึ้นอย่างรวดเร็ว แกนเหล็กถูกบีบอัดที่ความดันสูงอย่างยิ่งยวดและความดันนี้ยังคงเพิ่มขึ้นอย่างต่อเนื่อง ในเวลานี้แกนยังคงรูปอยู่ได้เพราะแรงดันดีเจนเนอเรซีของอิเล็กตรอน แต่เมื่อความกดดันเพิ่มขึ้นจนถึงจุดวิกฤติ อิเล็กตรอนในแกนเหล็กจะไม่อาจทนได้อีกต่อไป จึงถูกอัดรวมเข้ากับโปรตอนเกิดเป็นนิวตรอนและอนุภาคนิวตริโนการรวมตัวนี้ทำให้จำนวนอิเล็กตรอนในแกนกลางลดหายไปเกือบทั้งหมด ความดันดีเจนเนอเรซีของอิเล็กตรอนที่ประคับประคองแกนเหล็กไว้จึงหมดไปด้วย เมื่อไม่มีความดันดีเจนเนอเรซีคงรูปแกนไว้ แรงโน้มถ่วงจะอัดแกนกลางของดาวลงเป็นดาวนิวตรอนในชั่วพริบตา และในเสี้ยววินาทีน้นเอง พลังงานที่ถูกปลอปล่อยจากการยุบตัวของแกนที่หนาแน่นอย่างที่สุดจะระเบิดออกมาในทุกทิศทาง เปล่งแสงสว่างและพลังงานมากกว่าที่ดาวได้ผลิตมาตลอดชั่วชีวิต ความร้อนและความดันอันมหาศาลจากการระเบิดทำให้เกิดธาตุหนัก เช่น ปรอท เงิน หรือ ทองคำขึ้นได้ การระเบิดนี้เรียกว่า มหานวดารา จะฉีกดาวทั้งดวงออกเป็นธุลีและสาดเศษส่วนของดาวออกไปในห้วงอวกาศด้วยความเร็วกว่า 10,000 กิโลเมตร/วินาที

มหานวดาราจะทำลายดาวลงโดยสิ้นเชิง เหลือเพียงแต่ซากแกนกลางของดาว คือ ดาวนิวตรอน ซึ่งเป็นดาวที่มีความหนาแน่นสูงมากเพราะเต็มไปด้วยนิวตรอนอัดแน่น ดาวนิวตรอนมักมีขนาดประมาณ 20 – 30 กิโลเมตรเท่านั้น แต่ถึงกระนั้นก้มีมวลเทียบได้กับดวงอาทิตย์ของเรา นอกจากดาวนิวตรอนแล้ว รอบ ๆ มหานวดาราก็จะเต็มไปด้วยเศษซากของดาว เรียกว่า ซากมหานวดาราแล้วก็เป็นต้นกำเนิดของเนบิวลาด้วยเช่นกัน

การเกิดมหานวดาราไม่ได้ให้ผลแค่กลายเป็นดาวนิวตรอนสถานเดียวเท่านั้น ณ จุดสิ้นอายุขัยของดาวมวลมากจะระเบิดมวลส่วนใหญ่ของดาวออกไป แต่ถ้ามวลส่วนหนึ่งตกกลับมายังดาวนิวตรอนที่ยังเหลืออยู่ตรงกลาง ในกรณีของดาวฤกษ์ที่มีมวลเริ่มต้นมากกว่า 18 เท่าของมวลดวงอาทิตย์ (ค่าทางแบบจำลองคณิตศาสตร์) เศษซากดาวที่ตกกลับลงมายังดาวนิวตรอนจะมีมวลมากพอที่จะทำให้ดาวนิวตรอนมีมวลเพิ่มขึ้นเกินกว่า 3 เท่าของมวลดวงอาทิตย์ได้ ซึ่งเกินกว่าลิมิตดาวนิวตรอน ความดันดีเจนเนอเรซีของนิวตรอนจึงไม่อาจต้านทานแรงโน้มถ่วงที่สูงขึ้นเรื่อย ๆ ได้อีกต่อไป ดาวนิวตรอนจะถูกยุบตัวลงอย่างไม่มีที่สิ้นสุด เพราะไม่มีแรงใด ๆ ในจักรวาลที่จะต้านทานการยุบตัวได้ ชัยชนะเด็ดขาดจึงเป็นของแรงโน้มถ่วง คือดาวนิวตรอนจะยุบตัวลงเป็นหลุมดำ (Black Hole) ซึ่งเป็นวัตถุที่มีขนาดเป็นศูนย์มวลเป็นอนันต์ นอกจากนี้ยังมีอีกทางหนึ่งที่ดาวฤกษ์สามารถกลายเป็นหลุมดำได้คือ แกนเหล็กของดาวมวลมากที่สิ้นอายุขัยสามารถยุบตัวลงผ่านลิมิตดาวนิวตรอนกลายเป็นหลุมดำได้โดยตรง ในกรณีนี้ จะไม่เกิดปรากฏการณ์มหานวดาราอีกเลย (เกิดขึ้นในดาวที่มีมวลเริ่มต้นหลายสิบเท่าของมวลดวงอาทิตย์)

ดาวในทางช้างเผือกที่น่าจะเกิดระเบิดกลายเป็นมหานวดาราในอนาคต (Milky Way Candidates)[แก้]

กลุ่มเนบิวลารอบ ๆ ดาววอลฟ์-ราเยต 124 (Wolf-Rayet star WR 124) ที่ตั้งอยู่ในระยะห่างออกไป 21,000 ปีแสง ภายในกลุ่มดาวลูกธนู มีดาวขนาดใหญ่มากมายในทางช้างเผือกที่สามารถเปลี่ยนเป็นมหานวดาราได้ภายในหนึ่งพันถึงหนึ่งร้อยล้านปีข้างหน้า รวมทั้ง Rho Cassiopeiae, Eta Carinae และ RS Ophiuchi, the Kitt Peak Downes star , KPD 1930+2752, HD 179821, IRC+10420, VY Canis Majoris, Betelgeuse, Antares และ Spica, ดาววอลฟ์-ราเยต เช่น Gamma 2 Velorum , WR 102 ในกระจุกดาว Quintuplet ซึ่งตั้งอยู๋ใกล้กับบริเวณใจกลางทางช้างเผือก และอยู่ในกลุ่มดาวคนยิงธนู.

ดาวที่มีโอกาสเป็นมหานวดาราได้ในเร็ว ๆ นี้คือ IK Pegasi (HR 8210) ตั้งอยู่ห่างไป 150 ปีแสง ซึ่งประกอบด้วยดาวสีขาวและดาวแคระขาวที่ห่างกันแค่ 31 ล้านกิโลเมตร โดยดาวแคระขาวดวงนี้มีมวลเป็น 1.15 เท่าของมวลดวงอาทิตย์ และต้องใช้เวลาหลายอีกล้านปีก่อนที่จะกลายเป็นมหานวดาราประเภทที่ 1a ได้

อ้างอิง[แก้]

  1. นิพนธ์ ทรายเพชร, อารี สวัสดี และ บุญรักษา สุนทรธรรม. พจนานุกรมศัพท์ดาราศาสตร์ อังกฤษ-ไทย เฉลิมพระเกียรติพระบาทสมเด็จพระเจ้าอยู่หัว เนื่องในโอกาสพระราชพิธีมหามงคลเฉลิมพระชนมพรรษาครบ 6 รอบ 5 ธันวาคม 2542. กรุงเทพฯ : สมาคมดาราศาสตร์ไทย, 2548. 267 หน้า. ISBN 974-93621-6-0
  2. Montes, M. (February 12, 2002). "Supernova Taxonomy". Naval Research Laboratory. คลังข้อมูลเก่าเก็บจากแหล่งเดิมเมื่อ 2006-10-18. สืบค้นเมื่อ 2006-11-09.

แหล่งข้อมูลอื่น[แก้]