จำนวนแฟร์มา

จากวิกิพีเดีย สารานุกรมเสรี

จำนวนแฟร์มา ในทางคณิตศาสตร์ หมายถึง จำนวนเต็มบวกที่อยู่ในรูป

F_{n} = 2^{2^{ \overset{n} {}}} + 1

เมื่อ n เป็นจำนวนเต็มที่ไม่เป็นลบ จำนวนแฟร์มาได้ตั้งชื่อตามชื่อของปีแยร์ เดอ แฟร์มา นักคณิตศาสตร์คนแรกที่ศึกษาในเรื่องนี้ จำนวนแฟร์มาเก้าจำนวนแรกได้แก่

F0 = 21 + 1 = 3
F1 = 22 + 1 = 5
F2 = 24 + 1 = 17
F3 = 28 + 1 = 257
F4 = 216 + 1 = 65537
F5 = 232 + 1 = 4294967297 = 641 × 6700417
F6 = 264 + 1 = 18446744073709551617 = 274177 × 67280421310721
F7 = 2128 + 1 = 340282366920938463463374607431768211457 = 59649589127497217 × 5704689200685129054721
F8 = 2256 + 1 = 115792089237316195423570985008687907853269984665640564039457584007913129639937 = 1238926361552897 × 93461639715357977769163558199606896584051237541638188580280321

นอกจากนี้จำนวนแฟร์มายังสามารถเขียนอยู่ในรูปของความสัมพันธ์เวียนเกิดได้ดังนี้

F_{n} = (F_{n-1}-1)^{2}+1\,
F_{n} = F_{n-1} + 2^{2^{n-1}}F_{0} \cdots F_{n-2}
F_{n} = F_{n-1}^2 - 2(F_{n-2}-1)^2
F_{n} = F_{0} \cdots F_{n-1} + 2

จำนวนแฟร์มาที่เป็นจำนวนเฉพาะจะเรียกว่า จำนวนเฉพาะแฟร์มา ซึ่งเราสามารถพิสูจน์ได้ว่า จำนวนเฉพาะทุกจำนวนที่อยู่ในรูป 2n + 1 จะเป็นจำนวนเฉพาะแฟร์มาเสมอ ปัจจุบัน จำนวนเฉพาะแฟร์มาที่มีการค้นพบแล้วได้แก่ F0, F1, F2, F3 และ F4