จำนวนพลาสติก

จากวิกิพีเดีย สารานุกรมเสรี

จำนวนพลาสติก (อังกฤษ: Plastic number) ในทางคณิตศาสตร์ หมายถึง รากที่เป็นจำนวนจริงของสมการ

x^3=x+1,\;

ซึ่งมีค่าเท่ากับ

\rho = \sqrt[3]{\frac{1}{2}+\frac{1}{6}\sqrt{\frac{23}{3}}}+\sqrt[3]{\frac{1}{2}-\frac{1}{6}\sqrt{\frac{23}{3}}}

หรือค่าประมาณคือ 1.324717957244746025960908854...

คุณสมบัติอื่น ๆ[แก้]

จำนวนพลาสติกยังเป็นรากของสมการเหล่านี้ด้วย

x^5 = x^4 + 1\;
x^5 = x^2 + x + 1\;
x^5 = x^4 + x^3 - x\;
x^6 = x^2 + 2x + 1\;
 \!\ x^6 = x^4 + x + 1
x^7 = 2x^5 - 1\;
x^7 = 2x^4 + 1\;
x^8 = x^4 + x^3 + x^2 + x + 1\;
x^9 = x^6 + x^4 + x^2 + x + 1\;
x^{12} = 2x^{10} - x^4 - 1\;
x^{14} = 4x^9 + 1\;

และเป็นจำนวนปิโซ-วิชยรฆวัน ที่มีค่าน้อยที่สุด