การชำระเลือดผ่านเยื่อ

จากวิกิพีเดีย สารานุกรมเสรี
ผู้ป่วยโรคไตกำลังรับการชำระเลือดผ่านเยื่อกรอง
เครื่องชำระเลือดผ่านเยื่อกรอง หรือหน่วยไตเทียม

การชำระเลือดผ่านเยื่อ (อังกฤษ: hemodialysis) หรือที่นิยมเรียกว่าการฟอกเลือดหรือการฟอกไต เป็นวิธีการทางการแพทย์ที่กระทำภายนอกร่างกายในการกำจัดของเสียส่วนเกิน เช่น สารในกลุ่มครีเอทีนีนและยูเรียและน้ำออกจากเลือดในผู้ป่วยโรคไตวายซึ่งไตไม่สามารถทำงานได้เป็นปกติ ถือเป็นวิธีการรักษาทดแทนไตชนิดหนึ่ง นอกเหนือจากการปลูกถ่ายไตและการชำระเลือดผ่านเยื่อบุช่องท้อง (อังกฤษ: peritoneal dialysis) อีกทางเลือกหนึ่งสำหรับแยกส่วนประกอบของเลือดเช่นพลาสม่าหรือเซลล์คือ apheresis (กระบวนการหนึ่งที่กระทำภายนอกร่างกายที่เลือดถูกถ่ายออกมาแล้วองค์ประกอบบางอย่างถูกแยกออกโดยการฟอก องค์ประกอบบางส่วนยังคงอยู่ที่เดิม เลือดส่วนที่เหลือจะถูกส่งกลับคืนผู้บริจาคโดยการถ่ายเลือด)

การฟอกเลือดสามารถเป็นการบำบัดสำหรับผู้ป่วยนอกหรือผู้ป่วยใน การฟอกเลือดเป็นประจำจะดำเนินการในศูนย์ฟอกไตผู้ป่วยนอกที่เป็นห้องในโรงพยาบาลที่สร้างโดยเฉพาะหรือห้องที่ทำขึ้นเฉพาะในคลินิกที่อยู่ลำพัง การฟอกเลือดที่ทำที่บ้านมีน้อย การฟอกเลือดในคลินิกจะดำเนินการและบริหารจัดการโดยทีมงานพิเศษจากพยาบาลและช่างเทคนิค; การฟอกเลือดที่บ้านสามารถดำเนินการได้เองและบริหารจัดการร่วมกันด้วยความช่วยเหลือของผู้ช่วยที่ผ่านการฝึกอบรมที่มักจะเป็นสมาชิกในครอบครัว[1]

หลักการ[แก้]

เนื้อเยื่อที่มีความสามารถซึมผ่านเพียงกึ่งหนึ่ง (อังกฤษ: Semipermeable membrane)

หลักการของการฟอกเลือดเกี่ยวข้องกับการแพร่กระจายของสารผ่านเนื้อเยื่อที่มีความสามารถซึมผ่านเพียงกึ่งหนึ่ง การฟอกเลือดใช้การทวนกระแสการไหลของเลือด โดยที่สารฟอก (อังกฤษ: dialysate) ไหลในทิศทางตรงกันข้ามกับการไหลของเลือดในวงจรนอกร่างกาย การไหลทวนกระแสยังคงรักษาความเข้มข้นของส่วนประกอบทางเคมีผ่านเยื่อหุ้มเซลล์ที่จุดสูงสุดและเพิ่มประสิทธิภาพของการฟอกเลือด

การกำจัดของเหลว (การกรองยิ่งยวด (อังกฤษ: ultrafiltration)) จะกระทำโดยการเปลี่ยนความดันสถิตของน้ำ (อังกฤษ: hydrostatic pressure) ของช่องเก็บสารฟอก ทำให้เกิดน้ำอิสระและตัวทำละลายเจือจางบางส่วนเพื่อเคลื่อนย้ายข้ามเยื่อกรองไปตามระดับแรงดันตามลำดับ

สารละลายที่ใช้ในการฟอกอาจจะเป็นสารละลายที่ผ่านการฆ่าเชื้อของไอออนของแร่หรือปฏิบัติตามตำรับอังกฤษ (อังกฤษ: British Pharmacopoeia) ยูเรียและของเสียอื่น ๆ รวมทั้งโพแทสเซียมและฟอสเฟตจะกระจายลงในสารละลายฟอกไต อย่างไรก็ตามความเข้มข้นของโซเดียมและคลอไรด์มีความคล้ายคลึงกับพลาสม่าปกติของเลือดเพื่อป้องกันการสูญเสีย โซเดียมไบคาร์บอเนตจะถูกใส่เข้าไปเพื่อเพิ่มความเข้มข้นให้สูงกว่าพลาสม่าเพื่อแก้ไขความเป็นกรดในเลือด น้ำตาลกลูโคสจำนวนเล็กน้อยก็ยังถูกนำไปใช้อยู่ทั่วไป

โปรดสังเกตว่ากระบวนการนี้แตกต่างกับเทคนิคการกรองเลือด (อังกฤษ: hemofiltration)

ใบสั่งแพทย์[แก้]

ใบสั่งแพทย์สำหรับการฟอกเลือดจะออกโดยนักไตวิทยา (ผู้เชี่ยวชาญทางการแพทย์ด้านไต) ซึ่งจะระบุพารามิเตอร์ต่างๆสำหรับการบำบัดด้วยการฟอกเลือด พารามิเตอร์เหล่านี้รวมถึงความถี่ (จำนวนการรักษาต่อสัปดาห์), ระยะเวลาของการบำบัดในแต่ละครั้งและอัตราการไหลของเลือดและสารละลายฟอกเลือด รวมทั้งขนาดของสารฟอกไต นอกจากนี้ส่วนผสมของสารละลายฟอกเลือดบางครั้งยังมีการปรับเปลี่ยนในแง่ของระดับโซเดียมและโพแทสเซียมและระดับของไบคาร์บอเนต โดยทั่วไป ยิ่งผู้ป่วยมีร่างกายขนาดใหญ่, เขา / เธอยิ่งต้องการฟอกเลือดมากขึ้น ในทวีปอเมริกาเหนือและสหราชอาณาจักร การบำบัด 3-4 ชั่วโมง(บางครั้งถึง 5 ชั่​​วโมงสำหรับผู้ป่วยตัวใหญ่) 3 ครั้งต่อสัปดาห์เป็นเรื่องปกติ การบำบัดสองครั้งต่อสัปดาห์จะถูกจำกัดสำหรับผู้ป่วยที่มีการทำงานของไตที่เหลืออยู่มากพอสมควร สี่ครั้งต่อสัปดาห์มักจะกำหนดให้สำหรับผู้ป่วยที่มีขนาดใหญ่เช่นเดียวกับผู้ป่วยที่มีปัญหาเกี่ยวกับของเหลวที่มากเกินพิกัด ในที่สุดแล้ว มีความสนใจมากขึ้นสำหรับการฟอกเลือดในบ้านระยะสั้นประจำวันซึ่งเป็นการบำบัด 1.5-4 ชั่วโมง 5-7 ครั้งต่อสัปดาห์ นอกจากนี้ยังมีความสนใจในการฟอกเลือดในเวลากลางคืนให้กับผู้ป่วยที่บ้าน 8-10 ชั่วโมงต่อคืน 3-6 คืนต่อสัปดาห์ นอกจากนี้ การฟอกไตในศูนย์ในเวลากลางคืน 3-4 ครั้งต่อสัปดาห์ยังมีให้บริการด้วยเครื่องฟอกไตเต็มกำลังในสหรัฐอเมริกา

ผลข้างเคียงและภาวะแทรกซ้อน[แก้]

การฟอกเลือดมักจะเกี่ยวข้องกับการกำจัดของเหลว (ผ่านการกรองยิ่งยวด (อังกฤษ: ultrafiltration)) เพราะผู้ป่วยส่วนใหญ่ที่มีภาวะไตวายจะปัสสาวะน้อยหรือไม่มีเลย ผลข้างเคียงที่เกิดจากการเอาของเหลวออกมากเกินไปและ / หรือการเอาของเหลวออกอย่างรวดเร็วเกินไปจะได้แก่ความดันโลหิตต่ำ, ความเมื่อยล้า, การปวดหน้าอก, ตะคริวที่ขา, คลื่นไส้และปวดหัว อาการเหล่านี้สามารถเกิดขึ้นได้ในระหว่างการบำบัดและจะยังคงอยู่หลังจากนั้น; บางครั้งอาการเหล่านี้จะเรียกรวมกันว่าอาการเมาค้างหรือการชะล้างจากการฟอกไต (อังกฤษ: hangover หรือ dialysis washout) ความรุนแรงของอาการเหล่านี้มักจะเป็นสัดส่วนกับปริมาณและความเร็วของการเอาของเหลวออก อย่างไรก็ตามผลกระทบของจำนวนหรืออัตราการเอาของเหลวออกที่กำหนดจะแตกต่างกันอย่างมากในแต่ละคนและในแต่ละวัน ผลข้างเคียงเหล่านี้สามารถหลีกเลี่ยงได้และ / หรือลดความรุนแรงของมันลงได้โดยการจำกัดการดื่มของเหลวระหว่างการช่วงการบำบัดในแต่ละครั้งหรือจำกัดการเพิ่มปริมาณยาของการฟอกไต เช่นทำการฟอกให้บ่อยขึ้นหรือใช้เวลานานขึ้นกว่าการบำบัดมาตรฐานที่เกินสามครั้งต่อสัปดาห์ 3-4 ชั่วโมงต่อครั้งตามตารางเวลาการบำบัด

เนื่องจากการฟอกเลือดต้องเข้าถึงระบบการไหลเวียนของเลือด ผู้ป่วยที่เข้ารับการฟอกเลือดอาจเปิดระบบไหลเวียนเลือดของตัวเองให้เผชิญกับจุลินทรีย์ที่สามารถนำไปสู่​​การติดเชื้อที่มีผลต่อลิ้นหัวใจ (เยื่อบุหัวใจอักเสบ) หรือการติดเชื้อที่มีผลต่อกระดูก (osteomyelitis) ความเสี่ยงของการติดเชื้อแตกต่างกันไปขึ้นอยู่กับชนิดของการเข้าถึงที่ใช้ (ดูด้านล่าง) อาจมีการตกเลือด การติดเชื้ออาจลดลงให้น้อยสุดได้โดยยึดมั่นอย่างเคร่งครัดในการควบคุมการติดเชื้อในทางปฏิบัติให้มากที่สุด

Heparin เป็นสารกันเลือดแข็งที่ใช้กันมากที่สุดในการฟอกเลือด เนื่องจากโดยทั่วไปมันอดทนได้ดีและสามารถกลับตัวได้อย่างรวดเร็วด้วย protamine sulfate การแพ้ Heparin อาจจะเป็นปัญหาไม่บ่อยนักและอาจทำให้เกล็ดเลือดต่ำ ในผู้ป่วยดังกล่าว สารกันเลือดแข็งที่เป็นทางเลือกสามารถนำมาใช้ได้ ในผู้ป่วยที่มีความเสี่ยงการตกเลือดสูง การล้างไตอาจสามารถทำได้โดยไม่ต้องใช้สารกันเลือดแข็ง

First Use Syndrome เป็นปฏิกิริยาการแพ้ (อังกฤษ: anaphylactic reaction) ที่หายากแต่รุนแรงต่อไตเทียม อาการของมันรวมถึงจาม หอบ หายใจถี่ ปวดหลัง เจ็บหน้าอกหรือเสียชีวิตอย่างกะทันหัน มันอาจเกิดจากสารฆ่าเชื้อ (อังกฤษ: sterilant) ที่ตกค้างในไตเทียมหรือจากวัสดุของเมมเบรนมันเอง ในปีที่ผ่านมาอุบัติการณ์ของโรค First Use Syndrome ได้ลดลงเนื่องจากการใช้งานที่เพิ่มขึ้นของการฉายรังสีแกมมา การฆ่าเชื้อด้วยการอบไอน้ำ หรือการฉายรังสีลำแสงอิเล็กตรอนแทนการใช้สารฆ่าเชื้อที่เป็นสารเคมี และการพัฒนาของเยื่อ semipermeable ใหม่ที่มีวัสดุชีวะ (อังกฤษ: biocompatibility) สูง วิธีการใหม่ของขบวนการชิ้นส่วนการฟอกเลือดที่ผ่านการยอมรับก่อนหน้านี้จะต้องนำมาพิจารณาเสมอ ยกตัวอย่างเช่นในปี 2008 ปฏิกิริยาชนิดแรกของอาการ first-use ได้แก่การเสียชีวิต, ได้เกิดขึ้นจากการปนเปื้อนยา heparin ในระหว่างขั้นตอนการผลิตที่มี chondroitin sulfate ที่มีซัลเฟสมากเกินไป (อังกฤษ: oversulfated)[2]

ภาวะแทรกซ้อนระยะยาวของการฟอกเลือดจะรวมถึง amyloidosis (การผิดปรกติที่มีลักษณะของการสะสมของ amyloid (สารที่มีลักษณะคล้ายแป้ง) ในอวัยวะหรือในเนื้อเยื่อ) รวมทั้งการอักเสบและรูปแบบต่างๆของโรคหัวใจ การเพิ่มความถี่และระยะเวลาของการรักษาก็เพื่อปรับปรุงการโอเวอร์โหลดของของเหลวและหลีกเลี่ยงการขยายตัวของหัวใจที่มักเห็นได้บ่อยในผู้ป่วยดังกล่าว[3][4]

ข้างล่างนี้เป็นภาวะแทรกซ้อนเฉพาะที่เกี่ยวข้องกับประเภทของการเข้าถึงที่แตกต่างกันของการฟอกเลือด

การเข้าถึง[แก้]

ในการฟอกเลือด, มีสามวิธีหลักที่ใช้ในการเข้าถึงเลือด: 1. สายสวนทางหลอดเลือดดำ 2. การเชื่อมหลอดเลือดแดงและหลอดเลือดดำ (อังกฤษ: arteriovenous fistula (AV)) และ 3. การพ่วงหลอดเลือดแดงและหลอดเลือดดำ ชนิดของการเข้าถึงได้รับอิทธิพลจากปัจจัยต่าง ๆ เช่นช่วงเวลาที่คาดหวังของเส้นทางการไตวายของผู้ป่วยและสภาพของระบบหลอดเลือดของเขา ผู้ป่วยอาจมีการเข้าถึงหลายทาง มักจะเป็นเพราะการเชื่อมหลอดเลือด หรือการพ่วงหลอดเลือดใช้งานได้ดีและสายสวนก็ยังคงนำมาใช้ได้ การเข้าถึงหลอดเลือดสามประเภทหลักเหล่านี้ทั้งหมดทำได้โดยการผ่าตัด[5]

สายสวน[แก้]

การเข้าถึงด้วยสายสวน หรือบางครั้งเรียกว่า CVC (สายสวนหลอดเลือดดำส่วนกลาง (อังกฤษ: central venous catheter)) ประกอบด้วยสายสวนทำด้วยพลาสติกหนึ่งเส้นมีสองรู (หรือบางครั้งเป็นสายสวนสองเส้นแยกจากกัน) ซึ่งจะถูกเจาะเข้าไปในหลอดเลือดดำขนาดใหญ่ (ปกติจะเป็นหลอด vena cava ผ่าน internal jugular vein หรือเส้นเลือด femoral vein) เพื่อให้กระแสของเลือดขนาดใหญ่ถูกดึงออกจากรูหนึ่ง ป้อนเข้าวงจรการฟอกเลือดแล้วส่งเลือดกลับผ่านทางอีกรูหนึ่ง อย่างไรก็ตามการไหลของเลือดมักจะน้อยกว่าการเข้าถึงแบบเชื่อมหรือแบบพ่วงที่สามารถทำงานได้ดีเสมอ

หลอดสวนมักจะพบในสองแบบทั่วไปคือแบบท่อลอดและแบบไม่ใช่ท่อลอด

้การเข้าถึงด้วยสายสวนแบบไม่ใช่ท่อลอดจะใช้สำหรับการเข้าถึงระยะสั้น (ไม่เกิน 10 วัน แต่มักจะใช้ฟอกไตเพียงครั้งเดียวเท่านั้น) โดยสายสวนจะโผล่ออกมาจากผิวหนังที่ตำแหน่งเดียวกับที่เจาะเข้าไปในหลอดเลือดดำ

การเข้าถึงด้วยสายสวนแบบท่อลอดเกี่ยวข้องกับสายสวนที่ยาวกว่า ซึ่งมันจะถูกปักเข้าไปใต้ผิวหนังจากจุดที่เจาะเข้าในหลอดเลือดดำลอดไปออกอีกจุดหนึ่งที่ห่างออกไป มันมักจะถูกสอดไว้ใน internal jugular vein ในลำคอและจุดออกมักจะอยู่บนผนังหน้าอก ท่อลอดจะใช้เป็นอุปกรณ์ขวางกั้นการบุกรุกของจุลินทรีย์ ดังนั้นสายสวนแบบท่อลอดจึงถูกออกแบบมาสำหรับการเข้าถึงระยะสั้นถึงระยะกลาง (เป็นสัปดาห์ถึงหลายเดือนเท่านั้น) เพราะการติดเชื้อยังคงเป็นปัญหาที่พบบ่อย

นอกเหนือจากการติดเชื้อ หลอดเลือดดำตีบก็เป็นอีกปัญหาหนึ่งที่ร้ายแรงเมื่อใช้การเข้าถึงแบบสายสวน สายสวนเป็นสิ่งแปลกปลอมในหลอดเลือดดำและมักจะกระตุ้นให้เกิดการอักเสบที่ผนังหลอดเลือดดำ ซึ่งส่งผลให้เกิดแผลเป็นและการตีบของหลอดเลือดดำที่มักจะเป็นจุดที่มีการเสียดสี อาจทำให้เกิดปัญหากับความแออัดของหลอดเลือดดำที่รุนแรงในบริเวณที่ระบายออกโดยเส้นเลือดดำและยังอาจทำลายหลอดเลือดดำและหลอดเลือดดำรั่ว มันจะไร้ประโยชน์สำหรับการเข้าถึงแบบเชื่อมหรือแบบพ่วงในภายหลัง ผู้ป่วยที่ทำการฟอกเลือดในระยะยาวจะไม่เหลือจุดการเข้าถึงอย่างสิ้นเชิง ดังนั้นนี่อาจจะเป็นปัญหาร้ายแรง

การเข้าถึงด้วยสายสวนมักจะใช้สำหรับการเข้าถึงอย่างรวดเร็วสำหรับการฟอกเลือดในทันที สำหรับการเข้าถึงแบบท่อลอดในผู้ป่วยที่มีแนวโน้มว่าจะฟื้นตัวจากภาวะไตวายเฉียบพลันและสำหรับผู้ป่วยไตวายระยะสุดท้ายที่กำลังรอคอยการเข้าถึงทางเลือกอื่นที่จะสมบูรณ์หรือผู้ที่ไม่สามารถเข้าถึงได้ด้วยทางเลือกอื่น

การเข้าถึงด้วยสายสวนมักจะเป็นที่นิยมกับผู้ป่วยเพราะสิ่งที่แนบมากับเครื่องฟอกไตไม่ต้องใช้เข็ม อย่างไรก็ตามความเสี่ยงที่ร้ายแรงของการเข้าถึงด้วยสายสวนที่ระบุไว้ข้างต้นหมายความว่าการเข้าถึงดังกล่าวควรจะมีการไตร่ตรองว่าเป็นเพียงการแก้ปัญหาระยะยาวในสถานการณ์การเข้าถึงที่สิ้นหวังมากที่สุด

การเชื่อมหลอดเลือดแดงและหลอดเลือดดำ[แก้]

การเชื่อมหลอดเลือดแดงและหลอดเลือดดำที่จุด Fistula ในภาพ
ภาพแสดงการเจาะหลอดเลือดดำระหว่างการฟอกเลือด

การเชื่อมหลอดเลือดแดงและหลอดเลือดดำ (อังกฤษ: AV (arteriovenous) fistulas) เป็นวิธีการเข้าถึงหลอดเลือดที่นิยมกัน ศัลยแพทย์หลอดเลือดจะเชื่อมหลอดเลือดแดงและหลอดเลือดดำเข้าด้วยกันโดยการเชื่อมประสาน (อังกฤษ: anastomosis) เนื่องจากเป็นการบายพาสเส้นเลือดฝอย เลือดจะไหลอย่างรวดเร็วผ่านจุดเชื่อมนี้ ผู้ป่วยสามารถรู้สึกได้โดยวางนิ้วของเขาบนรอยต่อนี้ เขายังสามารถฟังผ่านหูฟังซึ่งจะได้ยินเสียงของเลือดที่ไหลผ่านจุดเชื่อมนี้

จุดเชื่อมมักถูกสร้างขึ้นในแขนที่ไม่ถนัดและอาจจะอยู่ในมือ (เรียกว่า 'snuffbox') ที่แขน (เรียกว่า radiocephalic หรือเรียกว่า Brescia-Cimino โดยที่หลอดเลือดแดง radial ถูกประสานกับหลอดเลือดดำศีรษะ (อังกฤษ: cephalic vein)) หรือที่ข้อศอก (ที่เรียกว่า brachiocephalic fistula ที่หลอดเลือดแดงที่แขน (อังกฤษ: brachial artery) จะถูกประสานกับหลอดเลือดดำศีรษะ (อังกฤษ: cephalic vein)). แม้ว่าจะพบได้น้อยกว่า จุดเชื่อมยังสามารถถูกสร้างขึ้นในขาหนีบ แต่ขั้นตอนการประสานอาจแตกต่างกัน ตำแหน่งในขาหนีบมักจะถูกเลือกเมื่อตำแหน่งที่แขนและมือไม่สามารถใช้ได้เนื่องจากลักษณะทางกายวิภาคหรือเนื่องจากล้มเหลวของจุดเชื่อมก่อนหน้านี้ที่ทำบนแขน / มือ จุดเชื่อมจะใช้เวลาหลายสัปดาห์ที่จะสมบูรณ์ใช้งานได้ โดยเฉลี่ยอาจจะใช้เวลา 4-6 สัปดาห์

ในระหว่างการบำบัด เข็มทั้งสองจะถูกปักลงไปในช่องจุดเชื่อม เข็มหนึ่งจะใช้ในการดึงเลือดออกมาและอีกเข็มหนึ่งจะใช้ส่งเลือดกลับไป การวางตัวของเข็มจะพืจารณาถึงการไหลปกติของเลือด้ เข็ม"เลือดแดง" จะดึงเลือดออกจากตำแหน่ง "ต้นน้ำ" ในขณะที่เข็ม "เลือดดำ"จะส่งเลือดกลับ "ท้ายน้ำ" การปักเข็มสลับกันจะนำไปสู่​​การรีไซเคิลบางส่วนของเลือดเดียวกันผ่านเครื่องฟอกไตทำให้​​การบำบัดมีประสิทธิภาพน้อยลง

ข้อดีของการเชื่อมหลอดเลือดก็คือมีอัตราการติดเชื้อต่ำ เพราะไม่มีสิ่งแปลกปลอมมาเกี่ยวข้อง อัตราการไหลเวียนของเลือดจะสูงขึ้น (ซึ่งแปลว่าการฟอกไตมีประสิทธิภาพมากขึ้น) และอัตราการเกิดลิ่มเลือดลดลง ภาวะแทรกซ้อนจะน้อยกว่าเมื่อเทียบกับวิธีการเข้าถึงแบบอื่น ๆ ถ้าจุดเชื่อมมีการไหลเวียนเลือดที่สูงมากและเส้นเลือดที่ให้เลือดส่วนที่เหลือของแขนขาทำงานไม่ดี อาจเกิดอาการที่เรียกว่า steal syndrome ขึ้นได้ นั่นคือเลือดที่ไหลเข้าแขนขาจะถูกดึงเข้าสู่จุดเชื่อมและถูกนำกลับคืนไปสู่ระบบหมุนเวียนทั่วไปโดยไม่ได้ป้อนเข้าสู่เส้นเลือดฝอยของแขนขา อาการนี้ส่งผลในแขนขาเย็น เป็นตะคริว และถ้ารุ​​นแรงเนื้อเยื่ออาจเสียหาย ภาวะแทรกซ้อนในระยะยาวอันหนึ่งของการเชื่อม AV ก็คือการพัฒนาไปสู่ภาวะเส้นโลหิตแดงโป่งพองเป็นถุงขังโลหิต (อังกฤษ: aneurysm), การปูดในผนังของหลอดเลือดดำที่จะอ่อนแอลงเนื่องจากโดยการแทงซ้ำๆกันของเข็มเมื่อเวลาผ่านไป แต่ความเสี่ยงของการพัฒนาไปสู่ภาวะเส้นโลหิตแดงโป่งพองเป็นถุงขังโลหิตจะลดลงโดยการหมุนตำแหน่งเข็มอย่างระมัดระวังไปทั่วๆจุดเชื่อม หรือใช้เทคนิค "รังดุม" (ตำแหน่งคงที่) ภาวะเส้นโลหิตแดงโป่งพองเป็นถุงขังโลหิตอาจจำเป็นต้องมีการผ่าตัดเพื่อแก้ไขและอาจร่นอายุการใช้งานของจุดเชื่อม จุดเชื่อมยังสามารถอุดตันได้เนื่องจากการแข็งตัวของเลือดหรืออาจติดเชื้อได้ถ้าไม่ได้ปฏิบัติตามข้อระมัดระวังในการฆ่าเชื้อระหว่างการแทงเข็มในช่วงเริ่มต้นของการฟอกเลือด เนื่องจากปริมาณสูงของเลือดที่ไหลผ่านจุดเชื่อม การตกเลือดอย่างหนักอาจเกิดขึ้นได้ นี่พบมากที่สุดหลังจากการฟอกไต ต้องใส่ความดันที่หลุมเข็มเพื่อให้เกิดการแข็งตัว ถ้าความดันถูกเอาออกก่อนเวลาอันควรหรือผู้ป่วยที่เข้าร่วมในกิจกรรมทางกายภาพเร็วเกินไปหลังจากการล้างไต หลุมเข็มสามารถเปิดออกได้

เพื่อป้องกันไม่ให้เกิดความเสียหายต่อจุดเชื่อมและภาวะเส้นโลหิตแดงโป่งพองเป็นถุงขังโลหิตหรือการก่อตัวของภาวะเส้นโลหิตแดงโป่งพองเป็นถุงขังโลหิตปลอม (อังกฤษ: pseudoaneurysm formation) มีข้อแนะนำว่าเข็มจะถูกแทงที่จุดแตกต่างกันในแบบหมุนเวียน อีกวิธีหนึ่งคือการฝังท่อพลาสติคเล็กๆด้วยเข็มทื่อ, ในตำแหน่งเดียวกัน วิธีการนี้เรียกว่า 'รังดุม' บ่อยครั้งที่มีรังดุมสองหรือสามที่ในจุดเชื่อมเดียว นอกจากนั้น วิธีการนี้ยังสามารถยืดอายุจุดเชื่อมและช่วยป้องกันไม่ให้เกิดความเสียหายต่อจุดเชื่อมอีกด้วย

การพ่วงหลอดเลือดดำและหลอดเลือดแดง (อังกฤษ: AV graft)[แก้]

การพ่วงหลอดเลือดดำและหลอดเลือดแดง

การพ่วงหลอดเลือดดำและหลอดเลือดแดงเป็นเหมือนการเชื่อมในหลายๆส่วน ยกเว้นแต่ว่าจะใช้หลอดเลือดเทียมในการต่อหลอดเลือดแดงเข้ากับหลอดเลือดดำ หลอดเลือดเทียมมักจะทำจากวัสดุสังเคราะห์เช่น Polytetrafluoroethylene (PTFE) แต่บางครั้งก็ใช้หลอดเลือดดำจากสัตว์ที่ผ่านการบำบัดทางเคมีและฆ่าเชื้อโรคแล้ว หลอดเลือดเทียมจะถูกใส่เข้าไปเมื่อเส้นเลือดธรรมชาติของผู้ป่วยไม่สามารถให้ทำการเชื่อมแบบ fistula ได้ หลอดเลือดเทียมสามารถพร้อมใช้งานได้เร็วกว่า fistulas และอาจจะพร้อมใช้งานเป็นเวลาไม่กี่สัปดาห์หลังจากการผ่าตัด (บางกรณีใหม่ๆอาจจะใช้งานได้เร็วกว่านี้) อย่างไรก็ตามการพ่วง AV มีความเสี่ยงสูงในการพัฒนาไปสู่หลอดเลือดตีบ โดยเฉพาะอย่างยิ่งในจุดที่ถัดจากแผลเย็บจากการโยงหลอดเลือดดำ การตีบมักจะนำไปสู่​​การเกิดลิ่มเลือด (เลือดแข็งตัว). เนื่องจากเป็นสิ่งแปลกปลอม หลอดเลือดเทียมมีความเสี่ยงมากขึ้นสำหรับการติดเชื้อ มีตัวเลือกเพิ่มเติมสำหรับตำแหน่งที่จะวางหลอดเลือดเทียมเพราะสามารถทำให้มันยาวขึ้นได้ ดังนั้นหลอดเลือดเทียมสามารถอยู่ในต้นขาหรือแม้กระทั่งที่คอ ('การโยงสร้อยคอ')

การเชื่อมโครงการแรก[แก้]

การเข้าถึงแบบ AV fistulas มีความเข้าใจง่ายและอยู่รอดมากกว่าการเข้าถึงแบบสายสวนหรือการพ่วงหลอดเลือดดำ มันยังสร้างภาวะแทรกซ้อนน้อยกว่าอีกด้วย ด้วยเหตุนี้ศูนย์การทำ Medicare และ Medicaid (CMS) ได้มีการจัดตั้งการริเริ่มการทำ fistula ครั้งแรก[6] เป้าหมายก็เพื่อเพิ่มการใช้ fistulas AV ในผู้ป่วยที่ต้องฟอกไต

มีงานวิจัยอย่างต่อเนื่องเพื่อทำให้หลอดเลือดด้วยวิธีชีววิศวกรรม ซึ่งอาจจะมีความสำคัญอันยิ่งใหญ่ในการทำ AV fistulas สำหรับผู้ป่วยในการฟอกเลือดที่ไม่มีหลอดเลือดที่ดีสำหรับการทำแม้เพียงจุดหนึ่ง มันเกี่ยวข้องกับการเลี้ยงเซลล์ที่ผลิตคอลลาเจนและโปรตีนอื่น ๆ ในหลอด micromesh ที่ย่อยสลายได้ ตามมาด้วยการกำจัดเซลล์เหล่านั้นเพื่อทำ 'หลอดเลือด' ให้สามารถจัดเก็บไว้ได้ในตู้เย็น[7]

อุปกรณ์[แก้]

แผนผังของวงจรการฟอกเลือด

เครื่องฟอกเลือดจะปั๊มเลือดของผู้ป่วยและสารฟอก (อังกฤษ: dialysate) เข้าไปในตัวฟอก (อังกฤษ: dialyzer) เครื่องฟอกไตใหม่ล่าสุดในตลาดใช้ระบบคอมพิวเตอร์และมีการตรวจสอบอย่างต่อเนื่องของพารามิเตอร์ที่วิกฤตต่อความปลอดภัย เช่นอัตราการไหลของเลือดและสารฟอก; ความสามารถในการนำไฟฟ้า (อังกฤษ: conductivity) ของสารละลายการฟอกเลือด, อุณหภูมิและค่าพีเอช; และการวิเคราะห์สารฟอกเพื่อหาหลักฐานของการรั่วไหลของเลือดหรือการปรากฏตัวของอากาศ ค่าใด ๆ ที่อ่านได้ค่าผิดจากช่วงปกติจะสร้างเสียงแจ้งเตือนให้กับช่างเทคนิคผู้ดูแลผู้ป่วย ผู้ผลิตเครื่องฟอกไตรวมถึง บริษัท เช่น Nipro, Fresenius, Gambro แบ็กซ์เตอร์, B. Braun, NxStage และ Bellco

ระบบน้ำ[แก้]

แทงค์สารละลายสารฟอของเครื่องฟอกเลือด

ระบบการทำน้ำให้บริสุทธิ์มีความสำคัญอย่างมากสำหรับการฟอกเลือด เนื่องจากผู้ป่วยที่ทำการฟอกเลือดต้องสัมผัสกับปริมาณมหาศาลของน้ำเมื่อผสมกับสารฟอกเข้มข้นเพื่อทำเป็นสารละลาย แม้เพียงเศษของสารปนเปื้อนหรือเชื้อแบคทีเรียก็สามารถเล็ดลอดเข้าสู่กระแสเลือดของผู้ป่วยได้ เนื่องจากไตเกิดความเสียหายจึงไม่สามารถปฏิบัติหน้าที่ตามวัตถุประสงค์ของการกำจัดสิ่งสกปรก ไอออนต่างๆที่เข้าสู่กระแสเลือดผ่านทางน้ำสามารถเติบโตขึ้นให้อยู่ในระดับที่เป็นอันตรายและก่อให้เกิดอาการต่าง ๆ นานาหรือเสียชีวิตได้ อะลูมิเนียม, คลอราไมน์, ฟลูออไรด์, ทองแดงและสังกะสีรวมทั้งเศษและพิษของแบคทีเรียทั้งหมดนี้สามารถก่อให้เกิดปัญหาได้

ด้วยเหตุนี้ น้ำที่ใช้ในการฟอกเลือดจะต้องทำให้บริสุทธิ์อย่างรอบคอบก่อนการใช้งาน ตอนแรกมันจะถูกกรองและปรับอุณหภูมิและค่าพีเอชจะได้รับการแก้ไขโดยการเพิ่มกรดหรือด่าง จากนั้นก็จะมีการปรับให้นุ่มลง ต่อไปน้ำจะวิ่งผ่านแทงค์ผงถ่านเพื่อดูดซับสารปนเปื้อนอินทรีย์ การทำให้บริสุทธ์ขั้นต้นก็จะทำโดยการบังคับให้น้ำไหลผ่านเมมเบรนที่มีรูขนาดเล็กมากที่เรียกว่าเมมเบรนออสโมซิสย้อนกลับ (อังกฤษ: reverse osmosis membrane) ซึ่งจะยอมให้น้ำผ่านไปได้ แต่จะขวางกั้นสิ่งเจือปนที่แม้มีจะขนาดเล็กมากเช่นอิเล็กโทรไลท์ การกำจัดขั้นตอนสุดท้ายของอิเล็กโทรไลท์ส่วนที่เหลือจะทำโดยปล่อยน้ำผ่านถังที่มีเรซินที่ทำหน้าที่แลกเปลี่ยนไอออนซึ่งไอออนลบและไอออนบวกที่เหลือจะถูกแทนที่ด้วยโมเลกุลของไฮดรอกซิลและไฮโดรเจนตามลำดับ สิ่งที่ได้คิอน้ำบริสุทธิ์ยิ่งยวด

แม้ว่าระดับความบริสุทธิ์ของน้ำนี้อาจจะไม่เพียงพอ แนวโน้มเมื่อเร็ว ๆ นี้คือการข้ามขั้นตอนการทำน้ำให้บริสุทธิ์ขั้นสุดท้าย (หลังจากผสมกับสารฟอกเลือดเข้มข้น) โดยใช้เมมเบรนที่เป็นตัวฟอกในตัว (อังกฤษ: dialyzer membrane) ซึ่งนี้จะเป็นอีกขั้นหนึ่งของการป้องกันโดยการเอาสิ่งสกปรกออก, โดยเฉพาะอย่างยิ่งสิ่งที่เป็นแหล่งกำเนิดของเชื้อแบคทีเรียที่อาจมีการสะสมในน้ำหลังจากไหลผ่านระบบทำน้ำให้บริสุทธิ์เดิม

เมื่อน้ำบริสุทธิ์ผสมกับสารฟอกเลิอดเข้มข้น ความนำไฟฟ้าของน้ำจะเพิ่มขึ้นเนื่องจากน้ำที่มีประจุไอออนจะนำไฟฟ้าได้ดี ในระหว่างการฟอกเลือด การนำไฟฟ้าของสารละลายการฟอกเลือดจะถูกตรวจสอบอย่างต่อเนื่องเพื่อให้แน่ใจว่าน้ำและสารฟอกเลือดเข้มข้นทำการผสมกันในสัดส่วนที่เหมาะสม ถ้าสารละลายการฟอกเลือดมีความเข้มข้นมากเกินไปหรือเจือจางมากเกินไปอาจทำให้เกิดปัญหาทางคลินิกที่รุนแรง

ตัวฟอกเลือด[แก้]

ตัวฟอกเลือด (อังกฤษ: dialyzer) เป็นอุปกรณ์ในเครื่องฟอกเลือดที่ทำการกรองเลือดจริงๆ เกือบทั้งหมดที่ใช้อยู่ในปัจจุบันเป็นแแบบไฟเบอร์กลวงมัดเป็นรูปทรงกระบอกที่มีผนังเป็นเยื่อกึ่งน้ำซึมได้ (อังกฤษ: semi-permeable membrane) วางอยู่ที่ปลายแต่ละด้านของทรงกระบอกประกอบกันเป็นอุปกรณ์คล้ายกะเปาะ (ด้วยกาวชนิดหนึ่ง) จากนั้นอุปกรณ๋นี้จะถูกใส่ลงไปในกระบอกพลาสติกใสที่มีช่องเปิดสี่ช่อง สองช่องเปิดจะเป็นพอร์ตเลือดอยู่ที่แต่ละปลายของกระบอกซึ่งจะสื่อสารกับแต่ละปลายของมัดเส้นใยกลวง ซึ่งจะใช้เป็น "ช่องเลือด" ของตัวฟอก อีกสองพอร์ตจะถูกตัดเข้าด้านข้างของกระบอกซึ่งจะสื่อสารกับช่องว่างรอบเส้นใยกลวงที่เรียกว่า "ช่องสารฟอก" (อังกฤษ: dialysate compartment) เลือดจะสูบผ่านทางมัดของหลอดบางมากๆที่มีรูปร่างเหมือนเส้นเลือดฝอย และสารฟอกจะถูกสูบผ่านที่ว่างรอบเส้นใย ความดันไล่ระดับถูกใส่เข้าไปเมื่อจะย้ายของเหลวจากเลือดไปยังช่องสารฟอก

เยื่อกรองและฟลักซ์[แก้]

เยื่อกรองในตัวฟอกเลือดจะมีรูพรุนขนาดเล็กหลายขนาด รูพรุนที่มีขนาดเล็กเรียกว่า "ฟลักซ์ต่ำ" และรูพรุนที่มีขนาดใหญ่เรียกว่า "ฟลักซ์สูง" โมเลกุลขนาดใหญ่เช่นเบต้า-2-microglobulin ไม่ถูกลบออกเลยเมื่อใช้ตัวฟอกแบบฟลักซ์ต่ำ; ล่าสุดมีแนวโน้มที่จะใช้ตัวฟอกแบบฟลักซ์สูง อย่างไรก็ตาม ตัวฟอกดังกล่าวต้องการเครื่องฟอกไตสมัยใหม่ที่มีสารละลายฟอกเลือดคุณภาพสูงเพื่อควบคุมอัตราการกำจัดของเหลวอย่างเหมาะสมและเพื่อป้องกันสิ่งสกปรกจากสารละลายการฟอกไตที่อาจไหลกลับผ่านเยื่อกรองเข้าไปในผู้ป่วยได้

เยื่อกรองในตัวฟอกเลือดเคยทำจากเซลลูโลสเป็นหลัก (มาจากผ้าฝ้าย) พื้นผิวของเยื่อดังกล่าวไม่ใช่วัสดุชีวะ (อังกฤษ: biocompatible) อย่างมากเพราะกลุ่มไฮดรอกซิลที่ผ่านการสัมผัสแล้วจะเปิดใช้งานระบบเสริมให้กับเลือดที่กำลังผ่านเยิ่อกรอง ดังนั้นเยื่อเซลลูโลส "ที่ไม่ได้ทดแทน" ขั้นพื้นฐานได้มีการปรับเปลี่ยน หนึ่งในการเปลี่ยนแปลงนั้นก็เพื่อจะห่อหุ้มกลุ่มไฮดรอกซิลเหล่านี้ด้วยกลุ่มอะซิเตท (เซลลูโลส acetate); อีกการเปลี่ยนแปลงหนึ่งคือเพื่อผสมในสารบางอย่างที่จะยับยั้งการเปิดใช้งานระบบเสริมที่พื้นผิวของเยื่อกรอง(เซลลูโลสที่ผ่านการปรับเปลี่ยน) เยื่อกรอง "เซลลูโลสที่ไม่ถูกแทนที่" ต้นฉบับไม่ได้มีการใช้อย่างกว้างขวางอีกต่อไปในขณะที่เซลลูโลสอะซิเตตและตัวฟอกเลือดที่ทำจากเซลลูโลสที่ผ่านการดัดแปลงยังคงมีการใช้งาน เยื่อกรองแบบเซลลูโลสสามารถทำให้เป็นแบบฟลักซ์ต่ำหรือฟลักซ์สูงได้ขึ้นอยู่กับขนาดรูพรุนของมัน

อีกกลุ่มของเยื่อกรองจะทำจากวัสดุสังเคราะห์ โดยใช้สารโพลีเมอเช่น polyarylethersulfone, polyamide, polyvinylpyrrolidone, โพลีคาร์บอเนต, และ polyacrylonitrile เยื่อกรองสังเคราะห์เหล่านี้เปิดใช้งานระบบเสริมในระดับที่น้อยกว่าเยื่อกรองเซลลูโลสที่ไม่ถูกแทนที่ เยื่อกรองสังเคราะห์สามารถทำเป็นแบบฟลักซ์ต่ำหรือฟลักซ์สูงได้ แต่ส่วนใหญ่จะเป็นแบบฟลักซ์สูง

นาโนเทคโนโลยีจะถูกใช้ในบางกรณีของเยื่อกรองแบบฟลักซ์สูงล่าสุดเพิ่อสร้างขนาดรูขุมขนที่มีขนาดเดียว เป้าหมายของเยื่อกรองฟลักซ์สูงคือการให้ผ่านโมเลกุลที่ค่อนข้างใหญ่เช่นเบต้า-2-microglobulin (MW 11,600 ดาลตัน) แต่ไม่ให้ผ่านอัลบูมิน (MW ~ 66,400 ดาลตัน) ทุกเยื่อกรองจะมีรูพรุนในช่วงขนาดหนึ่ง เมื่อขนาดรูพรุนเพิ่มขึ้น บางตัวกรองแบบฟลักซ์สูงเริ่มที่จะยอมให้อัลบูมินผ่านออกจากเลือดเข​​้าสู่ตัวฟอก นี่คือความคิดที่ไม่พึงประสงค์ ถึงแม้ว่าความคิดหนึ่งถือว่าการเอาบางอัลบูมินออกอาจจะเป็นประโยชน์ในแง่ของการเอาสารพิษที่มีโปรตีน (อังกฤษ: protein-bound uremic toxins) ออก

ฟลักซ์ของเยื่อกรองและผลลัพธ์[แก้]

อ้างอิง[แก้]

  1. National Kidney and Urologic Diseases Information Clearinghouse guidance Kidney Failure: Choosing a Treatment That's Right for You
  2. Kishimoto TK, Viswanathan K, Ganguly T et al. (2008). "Contaminated heparin associated with adverse clinical events and activation of the contact system". N Engl J Med 358 (23): 2457–67. doi:10.1056/NEJMoa0803200. PMC 3778681. PMID 18434646. 
  3. Effects of short daily versus conventional hemodialysis on left ventricular hypertrophy and inflammatory markers: a prospective, controlled study
  4. Weinreich T, De los Ríos T, Gauly A, Passlick-Deetjen J (2006). "Effects of an increase in time vs. frequency on cardiovascular parameters in chronic hemodialysis patients". Clin. Nephrol. 6 (6): 433–9. PMID 17176915. 
  5. Kallenbach J.Z.In: Review of hemodialysis for nurses and dialysis personnel. 7th ed. St. Louis, Missouri:Elsevier Mosby; 2005.
  6. Fistula First Initiative
  7. Seppa, Nathan (2 February 2011). "Bioengineering Better Blood Vessels". Science News. สืบค้นเมื่อ 4 February 2011.