กราฟระบุทิศทาง

จากวิกิพีเดีย สารานุกรมเสรี
กราฟระบุทิศทาง

ในทฤษฎีกราฟ กราฟระบุทิศทาง หรือ ไดกราฟ คือกราฟซึ่งเส้นเชื่อมมีทิศ กล่าวคือกราฟ G = (V, A) (หรืออาจจะใช้ G = (V, E) ก็ได้) โดยที่[1]

  • เซต V เป็นเซตซึ่งสมาชิกคือจุดยอด หรืออาจเรียกว่าโหนด หรือปม
  • เซต A เป็นเซตของเส้นเชื่อมมีทิศทาง ซึ่งเป็นคู่อันดับของจุดยอด สำหรับเส้นเชื่อมของกราฟระบุทิศทาง อาจเรียกว่าเส้นเชื่อมมีทิศทางหรือลูกศร (และสำหรับเซตของเส้นเชื่อม (edge) นี้ ในบางครั้งอาจใช้ E แทน A)

กราฟระบุทิศทางแตกต่างจากกราฟไม่ระบุทิศทางตรงเซตของเส้นเชื่อม ซึ่งเส้นเชื่อมของกราฟระบุทิศทางจะเป็นคู่อันดับของจุดยอด ในขณะที่เส้นเชื่อมของกราฟไม่ระบุทิศทางจะเป็นคู่ไม่อันดับของจุดยอด

เนื่องจากกราฟอาจจะเป็นกราฟอย่างง่ายหรือมัลติกราฟก็ได้ บางครั้งจึงอาจเรียกประเภทเข้าไปด้วยว่า กราฟระบุทิศอย่างง่าย หรือ มัลติกราฟที่มีทิศทาง ซึ่งสำหรับมัลติกราฟนั้น A จะเป็นมัลติเซตแทนที่เซต เพื่อให้สามารถมีเส้นเชื่อมมากกว่า 1 เส้นระหว่างคู่ของจุดยอดได้ อย่างไรก็ตาม มัลติกราฟจะสามารถมีวงวน (เส้นเชื่อมที่ปลายทั้งสองด้านต่อกับจุดยอดจุดเดียวกัน) ได้หรือไม่ก็ยังแตกต่างกันไปตามแต่ที่กำหนดให้

นิยามทั่วไป[แก้]

เส้นเชื่อมมีทิศทาง e = (x, y) เป็นเส้นเชื่อมจาก x ไป y โดยที่ y เรียกว่าหัว ส่วน x เรียกว่าหางของเส้นเชื่อม นอกจากนี้ y นั้นถือว่าเป็นจุดยอดข้างหลังโดยตรง ในขณะที่ x ถือว่าเป็นจุดยอดก่อนหน้าโดยตรง สำหรับวิถีจาก x ไปยัง y จะได้ว่า y เป็นจุดยอดข้างหลัง ส่วน x เป็นจุดยอดก่อนหน้า เส้นเชื่อมมีทิศทาง  (y, x) จะถูกเรียกว่าเป็นเส้นเชื่อมกลับทิศของ  (x, y)

กราฟระบุทิศทาง D จะถูกเรียกว่าสมมาตร ก็ต่อเมื่อทุกๆเส้นเชื่อมนั้น มีเส้นเชื่อมกลับทิศอยู่ในกราฟด้วย ในแง่การไปถึงกันได้ กราฟระบุทิศทางที่สมมาตร D จะเทียบเท่ากับกราฟไม่ระบุทิศทาง G โดยที่เส้นเชื่อม (x,y) และ (y,x) เทียบเท่ากับเส้นเชื่อม {x,y} ดังนั้น หากเปรียบเทียบระหว่างกราฟระบุทิศทางที่สมมาตรและกราฟไม่ระบุทิศทางที่เทียบเท่ากัน จะได้ว่า |E| = |A|/2

การกำหนดทิศทาง คือการนำกราฟไม่ระบุทิศทางอย่างง่ายมากำหนดทิศทางของแต่ละเส้นเชื่อมอย่างไรก็ได้ให้กลายเป็นกราฟระบุทิศทาง กราฟที่ได้จากการกำหนดทิศทางนี้เรียกว่ากราฟกำหนดทิศทาง มีคุณสมบัติคือจะไม่มีวงวนหรือวัฏจักรขนาด 2 [2]

กราฟระบุทิศทางถ่วงน้ำหนัก คือกราฟระบุทิศทางที่เป็นกราฟถ่วงน้ำหนักด้วย อาจเรียกกราฟระบุทิศทางถ่วงน้ำหนักว่าเครือข่าย

การเก็บข้อมูลกราฟระบุทิศทางนั้น อาจทำได้โดยการใช้เมทริกซ์ประชิด ในกรณีที่กราฟเป็นกราฟเทียม (นั่นคือมีวงวนและเส้นเชื่อมขนานได้) เมทริกซ์เก็บข้อมูลจะเป็นเมทริกซ์ของตัวเลขขนาด n \times n โดย n คือจำนวนจุดยอดของกราฟ aij ซึ่ง i \neq j แสดงถึงจำนวนเส้นเชื่อมมีทิศทางจากจุดยอด i ไป j ส่วน aii แสดงถึงจำนวนของวงวนที่จุดยอด i หากเป็นกราฟอย่างง่าย จะได้ว่าเมทริกซ์ที่กล่าวมานี้จะเป็นเมทริกซ์ฐานสอง

นอกจากนี้ การเก็บข้อมูลกราฟระบุทิศทาง อาจใช้เมทริกซ์ตกกระทบก็ได้

ระดับขั้นเข้าและระดับขั้นออก[แก้]

กราฟระบุทิศทาง แต่ละจุดยอดแสดงถึง (ระดับขั้นเข้า, ระดับขั้นออก)

สำหรับจุดยอดใดๆ ระดับขั้นเข้าคือจำนวนเส้นเชื่อมที่พุ่งเข้าจุดยอดนั้นๆ (จุดยอดนั้นเป็นหัวของเส้นเชื่อม) ในขณะที่ระดับขั้นออกคือจำนวนเส้นเชื่อมที่พุ่งออกจากจุดยอดนั้นๆ (จุดยอดนั้นเป็นหางของเส้นเชื่อม) สำหรับต้นไม้ ระดับขั้นออกคือระดับแตกกิ่ง

ระดับขั้นเข้าเขียนได้ว่า \deg^-(v) ส่วนระดับขั้นออกเขียนได้ว่า \deg^+(v). จุดยอดที่มี \deg^-(v)=0 เรียกว่า ต้นทาง ในขณะที่จุดยอดที่มี \deg^+(v)=0 เรียกว่า ปลายทาง

จากสูตรผลรวมระดับขั้น สำหรับกราฟระบุทิศทางจะได้ว่า

\sum_{v \in V} \deg^+(v) = \sum_{v \in V} \deg^-(v) = |A|

ถ้าหากทุกๆจุดยอดนั้น \deg^+(v) = \deg^-(v) กราฟนี้จะเป็นกราฟสมดุล[3]

ความต่อเนื่องของกราฟระบุทิศทาง[แก้]

ดูบทความหลักที่: ความต่อเนื่อง (ทฤษฎีกราฟ)

กราฟระบุทิศทาง G จะเรียกว่ากราฟต่อเนื่องแบบอ่อน (weakly connected) หรืออาจเรียกว่ากราฟต่อเนื่อง (connected)[4] ก็ต่อเมื่อนำกราฟระบุทิศทางนั้นมาเปลี่ยนเส้นเชื่อมที่มีทิศทางให้กลายเป็นเส้นเชื่อมไม่มีทิศทางให้หมด แล้วกราฟไม่ระบุทิศทางที่ได้เป็นกราฟต่อเนื่อง และกราฟระบุทิศทาง G จะเรียกว่ากราฟต่อเนื่องแบบเข้ม (strongly connected) ก็ต่อเมื่อทุกๆวิถีจาก u ไป v มีวิถีจาก v ไป u ด้วย นอกจากนี้ ส่วนประกอบแบบเข้ม (strongly components) คือกราฟย่อยที่มีขนาดมากที่สุดที่เป็นกราฟต่อเนื่องแบบเข้ม แนวคิดนี้นำไปสู่การแบ่งกราฟออกเป็นหลายๆส่วนโดยการหาส่วนประกอบแบบเข้มและลบออกจากกราฟเดิมไปเรื่อยๆ สุดท้ายจะได้ส่วนประกอบที่เชื่อมกันแบบเข้ม (strongly connected component)

กราฟระบุทิศทางประเภทต่างๆ[แก้]

กราฟอวัฏจักรระบุทิศทางอย่างง่าย

อ้างอิง[แก้]

  1. Bang-Jensen & Gutin (2000). Diestel (2005), Section 1.10. Bondy & Murty (1976), Section 10.
  2. Diestel (2005), Section 1.10.
  3. Satyanarayana, Bhavanari; Prasad, Kuncham Syam, Discrete Mathematics and Graph Theory, PHI Learning Pvt. Ltd., p. 460, ISBN 978-81-203-3842-5 ; Brualdi, Richard A. (2006), Combinatorial matrix classes, Encyclopedia of mathematics and its applications 108, Cambridge University Press, p. 51, ISBN 978-0-521-86565-4 .
  4. Bang-Jensen & Gutin (2000) p. 19 in the 2007 edition; p. 20 in the 2nd edition (2009).