กฎของเบนฟอร์ด

จากวิกิพีเดีย สารานุกรมเสรี
การกระจายของเลขโดดหลักแรกตามกฎของเบนฟอร์ด แต่ละแท่งแสดงเลขโดดหนึ่ง และความสูงของแท่งแสดงร้อยละของจำนวนซึ่งเริ่มต้นด้วยเลขโดดนั้น
การลงจุดความถี่ของของเลขโดดนัยสำคัญหลักแรกของค่าคงตัวทางฟิสิกส์ (เขียว) เทียบกับกฎของเบนฟอร์ด (แดง)

กฎของเบนฟอร์ด (อังกฤษ: Benford's law) หรือ กฎเลขโดดตัวแรก หมายถึง ความถี่การกระจายเลขโดดในหลายแหล่งข้อมูลในชีวิตจริง (แต่ไม่ใช่ทั้งหมด) ในการกระจายนี้ ปรากฏว่าเลข 1 เป็นเลขหลักแรกมากถึงราว 30% ของทั้งหมด ขณะที่เลขมากกว่า 1 มีความถี่เป็นเลขหลักแรกน้อยกว่า โดยเลข 9 เป็นเลขหลักแรกน้อยกว่า 5% ของทั้งหมด กฎของเบนฟอร์ดยังว่าด้วยการกระจายคาดหมายของเลขโดดหลักอื่นด้วย ซึ่งมาใกล้การกระจายเป็นรูปแบบเดียวกัน

พบว่าผลลัพธ์นี้ใช้ได้กับชุดข้อมูลหลากหลาย รวมถึงใบแจ้งหนี้ไฟฟ้า ที่อยู่ถนน ราคาหลักทรัพย์ จำนวนประชากร อัตราตาย ความยาวแม่น้ำ ค่าคงตัวทางฟิสิกส์และคณิตศาสตร์ และกระบวนการซึ่งอธิบายด้วยกฎเลขยกกำลัง ซึ่งพบได้บ่อย กฎของเบนฟอร์ดมีแนวโน้มแม่นยำที่สุดเมื่อค่ามีอันดับของขนาด

กราฟที่แสดงขวามือแสดงกฎของเบนฟอร์ดสำหรับฐาน 10 มีนัยทั่วไปของกฎต่อจำนวนที่แสดงในฐานอื่น (เช่น ฐาน 16) และยังมีนัยทั่วไปตั้งแต่ 1 เป็นเลขโดดหลักแรกจนถึง n เป็นเลขโดดหลักแรก

กฎนี้ได้ชื่อตามนักฟิสิกส์ แฟรงก์ เบนฟอร์ด ซึ่งระบุใน ค.ศ. 1938[1] แม้ไซมอน นิวคอมบ์จะเคยระบุไว้ก่อนแล้วใน ค.ศ. 1881[2]

อ้างอิง[แก้]

  1. Frank Benford (March 1938). "The law of anomalous numbers". Proceedings of the American Philosophical Society 78 (4): 551–572. JSTOR 984802.  (subscription required)
  2. Simon Newcomb (1881). "Note on the frequency of use of the different digits in natural numbers". American Journal of Mathematics (American Journal of Mathematics, Vol. 4, No. 1) 4 (1/4): 39–40. doi:10.2307/2369148. JSTOR 2369148.  (subscription required)